CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2012 series

9709 MATHEMATICS

9709/61

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	WWW.C	lynamicpap	ers.com
Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	61

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √* implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9709	61

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	WWW.C	www.dynamicpapers.com		
Page 4	Mark Scheme	Syllabus	Paper	l
	GCE AS/A LEVEL – October/November 2012	9709	61	

1	$P(0) = 7/10 \times 6/9 \times 5/8 = 210/720$ $P(1) = 3/10 \times 7/9 \times 6/8 \times 3C1 = 378/720$ $P(2) = 3/10 \times 2/9 \times 7/8 \times 3C2 = 126/720$ $P(3) = 3/10 \times 2/9 \times 1/8 = 6/720 (1/120)$	B1 B1 B1 B1 [4	Finding P(0, 1, 2, 3) 1 or 2 correct 3 correct All correct
2	$\Sigma x - \Sigma 36 = -60$ $\Sigma x = 24 \times 36 - 60 = 804$	M1 A1 [2	Expanding brackets ie mult by 24 and subt 60 [] Correct answer
OR	$\bar{x} = 36 - 60/24 = 33.5$ $\Sigma x = 33.5 \times 24 = 804$	M1 A1	Dividing by 24 and subt from 36 Correct answer
	$\Sigma x^2 - 2.36\Sigma x + \Sigma 36^2 = 227.6$	M1 M1	Expanding brackets with $36\Sigma x$ and $\Sigma 36^2$ min $\Sigma x^2 - 2 \times 36\Sigma x + \Sigma 36^2 = 227.6$ seen
	$\Sigma x^2 = 27011.76 \ (27000)$	A1 [3]	Correct answer
OR	$227.76/24 - (-2.5)^2 = sd^2 = 3.24$ $\Sigma x^2/24 - (33.5)^2 = 3.24$ $\Sigma x^2 = 27011.76 (27000)$	M1 M1 A1	227.76/24 – (their coded mean) ² seen $\Sigma x^2/24 - (\bar{x})^2$ = their var if +ve seen o.e. Correct answer
3	(i) $z = -1.036 = \frac{73 - 75}{\sigma}$ $\sigma = 1.93$	B1 M1 A1 [3	\pm correct z value accept ± 1.037 Equation with 73, 75, σ and a z value Rounding to correct answer
	(ii) $P(>77) = 0.15$ P(<3) = P(0, 1, 2) $= (0.85)^8 + {}_8C_1(0.15)(0.85)^7 + {}_8C_2(0.15)^2(0.85)^6$	M1 M1	Prob rounding to 0.15 and 0.85 ${}_{8}C_{x}p^{x}(1-p)^{8-x}$ seen any <i>p</i> , $0 \le p \le 1$
	= 0.895	A1 [3	Correct answer
4	(i) 14 3 15 3 4 5 16 1 4 8 8 17 3 7 18 5	B1 B1	Correct stem Correct leaves
Ke	y: 14 3 represents 14300 dollars	B1 [3]] Key need dollars
	(ii) $LQ = 15400$	B1 [1]] Correct answer
	(iii) $5/11 \times 4/10 \times 2/9 \times 3C2 = 4/33 (0.121)$ OR $\frac{5C2 \times 2C1}{11C3}$	B1 B1 B1 [3	Mult 3 diff fractions or (5C2 or 2C1) seen in num Mult by 3C2 o.e. or correct denom Correct answer
5	(i) $P(>1) = 1 - (0.95)^{20} - (0.95)^{19} (0.05)^{1}_{20} C_1$ = 0.264	M1 M1 A1 [3	Binomial term 20Cx(0.05) ^x (0.95) ^{20-x} Correct unsimplified expression Correct answer

	Do	ao E	Mark Scheme			www.c	lynamicpape Syllabus		
Page 5		ige o	GCE AS/A LEVEL – October/		mber	2012	9709	Paper 61	
				T					
	(ii)	= 4020	or 20 work = $450 \times 10 - 480$	B1		4020 see			
		Profit < 19 Expected a	P work = -480 $\text{profit} = \frac{4020 \times (1 - 0.264) - 0.264}{480 \times 0.264}$	M1 M1		(1 - (i))	r (i) or their		
		Enpeeted	480×0.264			subtract	Aultiplying 480 by [1 – their ubtracting		
			= \$2830 (\$2832)	A1	[4]	Roundin	ig to correct ansv	ver	
		Or	4500 (1 – 0.264) = 2830						
5	(i)	$p = 0.2$ $\mu = 96 \times 0.2$	$2 = 19.2 \ \sigma^2 = 96 \times 0.2 \times 0.8 = 15.36$	B1		96×0.2	and 96×0.2×0.8	seen	
		P(<20) =	$P(z < \frac{19.5 - 19.2}{\sqrt{15.36}}) = P(z < 0.07654)$	M1 M1			lising must have the state to be a set of the set of th		
			√15.36	M1 A1	[5]		urea (> 0.5)		
		= 0.531							
	(ii)	P(OT B)	$=\frac{0.2\times0.6}{0.05\times0.3+0.2\times0.6+0.75}$	B1		fraction	$2 \times (0.6 \text{ or } 0.4) \text{ as}$		
		0.12		M1		involvin	at P(B) or P(g sum of 2 or 3 p	oroducts	
		$= \frac{0.12}{0.885}$ $= 0.136 (8)$	/59)	A1		correct u fraction	unsimplified nun	n or denom of	
		0.150 (0		A1	[4]	correct a	nswer		
7	(a)	$\frac{10!}{5!4!} = 126$	0	M1		dividing	$_{10}P_{10}$ seen in nu by 5! 4! only	im or alone of	
				A1	[2]	Correct	final answer		
	(b)	(i) ${}_{8}P_{4}$ or	$r_{8}C_{4} \times 4!$	M1		multiplication		allow ext	
		= 168	30	A1	[2]				
		(ii) 6C2 >	× 4!	M1		6C2 or 6 Mult by	6P2 seen multipl 4!	ied	
		= 360)	M1		Correct	answer		
		OR 6P4 of	$r 4 \times 3 \times 6 \times 5 = 360$	A1	[3]	Award f	ull marks		
	(c)	A B C 1 1 7	$=9C1 \times 8C1 \times 7C7 \text{ (oe)} \times {}_{3}C_{1} = 216$	M1			g at least two op 5 or 3, 3, 3	ptions of 1, 1,	
			$= 9C1 \times 8C3 \times 5C5(oe) \times 3! = 3024$	M1 M1		Mult an option by 3C1 of Any one of the 2 nd term mult, fitting with the fir 4, 5, 6 or 8) and corresp		being xCy see	
		3 3 3 =	$=9C3 \times 6C3 \times 3C3$ (oe) $= 1680$	A 1				ding y	
		Tata1 40	20	A1	[6]	seen	unsimplified 72	2, 504 or 16	
		Total = 49	20 ways	A1	[5]	Correct	answer		