UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9709 MATHEMATICS

9709/51

Paper 5, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	51

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	51

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR −2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	51

					1
1	(i)	$9 \times 0.4 = 0.6 \times T\sin 30$	M1		Moments about A
		T = 12N	A1	[2]	
	(ii)		M1		For resolving horizontally and vertically
		$\mu = (9 - 12\sin 30)/(12\cos 30)$	M1		For using $F = \mu R$
		$\mu = 0.289$	A1	[3]	
2	(i)	$x = (v\cos 60)0.6$ and $y = (v\sin 60)0.6 - g0.6^2/2$	M1		Finds both coordinates in terms of $t = 0.6$
			DM1		Relates coordinates and 45° angle
		$tan45 = [(vsin60)0.6 - g0.6^{2}/2]/[(vcos60)0.6]$	A1		$(v\sin 60)0.6 - g0.6^2/2 = (v\cos 60)0.6$
		$v = 8.2(0) \text{ ms}^{-1}$ AG	A1	[4]	
	(ii)		M1		Relates velocity components and 45°
		$8.2\sin 60 - gt = 8.2\cos 60$	A1		$\tan 45 = (8.2\sin 60 - gt)/(8.2\cos 60)$
		T = 0.3(00) s	A1	[3]	
3	(i)	0.25g = 20e/0.4	M1		Uses $T = \lambda x/L$
		OP (= 0.05 + 0.4) = 0.45 m	A1	[2]	
	(ii)	$20 \times 0.05^{2}/(2 \times 0.4) + 0.25v^{2}/2$ = 0.25g × 0.45	M1 A1		
		$v = 2.92 \text{ ms}^{-1}$	A1	[3]	
	(iii)	$20(d - 0.4)^2 / (2 \times 0.4) = 0.25gd$	M1		Hence $d^2 - (0.8 + 0.1)d + 0.16 = 0$
		$d = [0.9 \pm \sqrt{(0.9^2 - 4 \times 0.16)}]/2$	M1		Solves a 3 term quadratic equation
		d = 0.656	A1	[3]	Ignore d = 0.244 if seen
4	(i)	$\tan\theta = 0.7/(2.4/4)$	M1		
		$\theta = 49.4^{\circ}$	A1	[2]	
	(ii)	h/2 = 2.4/4	M1		
		h = 1.2	A1	[2]	

Page 5	Page 5 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9709	51

$4wVG = w \times 2.4 \times 3/4 + 3w(2.4 + h/2)$ $M1$ $Centre of mass above common circumference$ $VG = [\sqrt{(0.7^2 + 2.4^2)}]/\cos\alpha$ $h = 0.944$ $A1$ $Go = (-2.4/2.5 = 0.96)$ $A1$ $Go = (-2.50)$ $Go $				1	[
$VG = [\sqrt{(0.7^2 + 2.4^2)}]/\cos \alpha \qquad A1 \qquad \text{Centre of mass above common circumference} $ $VG = [\sqrt{(0.7^2 + 2.4^2)}]/\cos \alpha \qquad A1 \qquad \cos \alpha = 2.4/2.5 = 0.96$ $5 \textbf{(i)} 0.05 \text{dv}/\text{dt} = 0.05 \text{g} - 0.01 \text{v} \qquad M1 \qquad \text{Uses Newton's Second Law}$ $\int \text{dv}/(10 - 0.2 \text{v}) = \int \text{dt} \qquad M1 \qquad -\text{ln}(10 - 0.2 \text{v})/0.2 = \text{t} + \text{c}) \qquad A1 \qquad \text{d} = -\text{ln}(10 - 0.2 \text{v})/0.2 = \text{t} + \text{c}) \qquad A1 \qquad -\text{d} = -\text{dos} = -dos$		(iii)		M1		Table of values idea, accept $w = 1$
$VG = [\sqrt{(0.7^2 + 2.4^2)}]/\cos\alpha \qquad \qquad A1 \qquad \text{circumference} $ $VG = [\sqrt{(0.7^2 + 2.4^2)}]/\cos\alpha \qquad \qquad A1 \qquad \text{cos}\alpha = 2.4/2.5 = 0.96 $ $1 = 0.944 \qquad \qquad A1 \qquad A1 \qquad \qquad A1 \qquad \qquad A1 \qquad A2 \qquad A2$			$4\text{wVG} = \text{w} \times 2.4 \times 3/4 + 3\text{w}(2.4 + \text{h/2})$	A1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				M1		
5 (i) $0.05 \text{dv/dt} = 0.05 \text{g} - 0.01 \text{v}$ $\text{dv/dt} = 10 - 0.2 \text{v}$ AG A1 $\int \text{dv/}(10 - 0.2 \text{v}) = \int \text{dt}$ $-\ln(10 - 0.2 \text{v})/0.2 = \text{t} + \text{c})$ $\text{t} = 0, \text{v} = 0, \text{ hence } \text{c} = -5 \text{ln} 10$ $\ln(10 - 0.2 \text{v})/10 = 0.2 \text{t}, 1 - 0.02 \text{v} = \text{e}^{-0.2 \text{t}}$ $\text{v} = 50 - 50 \text{e}^{-0.2 \text{t}}$ A1 $(\text{ii)} \text{dx/dt} = 50 - 50 \text{e}^{-0.2 \text{t}}$ $x = \int (50 - 50 \text{e}^{-0.2 \text{t}}) \text{dt}$ M1 $x = 50 \text{t} + 50 \text{e}^{-0.2 \text{t}}/0.2 \text{ (+c)}$ $\text{h} = [50 \text{t} + 50 \text{e}^{-0.2 \text{t}}/0.2]_{0}^{0}$ M1 Or uses h = 0, t = 0 to evaluate c = (-250) and then finds h(2) $\text{h} = 17.6$ 6 (i) $\theta = \sin^{-1}(0.2/0.7) = 16.6^{\circ}$ with the vertical $\text{Tcos}\theta = 0.3 \text{g}$ M1 $\text{T} = 3.13 \text{ Resolves vertically}$ Uses Newton's Second Law radially			$VG = [\sqrt{(0.7^2 + 2.4^2)}]/\cos\alpha$	A1		$\cos\alpha = 2.4/2.5 = 0.96$
			h = 0.944	A1	[5]	
$\int dv/(10-0.2v) = \int dt$ $-\ln(10-0.2v)/0.2 = t (+ c)$ $t = 0, v = 0, \text{ hence } c = -5\ln 10$ $\ln(10-0.2v)/10 = 0.2t, 1 - 0.02v = e^{-0.2t}$ $v = 50 - 50e^{-0.2t}$ $x = \int (50 - 50e^{-0.2t})dt$ $h = [50t + 50e^{-0.2t}/0.2] (+c)$ $h = 17.6$ M1 Or uses $h = 0, t = 0$ to evaluate $c = (-250)$ and then finds $h(2)$ $h = 17.6$ M1 The contraction of the vertical of the contraction	5	(i)	0.05 dv/dt = 0.05g - 0.01v	M1		Uses Newton's Second Law
$-\ln(10-0.2v)/0.2 = t (+ c)$ $t = 0, v = 0, \text{ hence } c = -5\ln 10$ $\ln(10-0.2v)/10 = 0.2t, 1 - 0.02v = e^{-0.2t}$ $v = 50 - 50e^{-0.2t}$ $x = \int (50 - 50e^{-0.2t})dt$ $x = \int (50 + 50e^{-0.2t}/0.2)(+c)$ $h = [50t + 50e^{-0.2t}/0.2]_{2}^{0}$ $h = 17.6$ M1 Or uses $h = 0, t = 0$ to evaluate $c = (-250)$ and then finds $h(2)$ $h = 17.6$ M1 The contraction of the finds $h(2)$ $h = 17.6$ M1 The contraction of the finds $h(2)$ $h = 17.6$ M1 The contraction of the finds $h(2)$ $h = 17.6$ M1 The contraction of the finds $h(2)$ M2 The find $h(2)$ and			dv/dt = 10 - 0.2v AG	A1		
$t = 0, v = 0, \text{ hence } c = -5\ln 10$ $\ln(10 - 0.2v)/10 = 0.2t, 1 - 0.02v = e^{-0.2t}$ $v = 50 - 50e^{-0.2t}$ A1 [6] (ii) $dx/dt = 50 - 50e^{-0.2t}$ $x = \int (50 - 50e^{-0.2t})dt$ $h = [50t + 50e^{-0.2t}/0.2]_2^0$ $h = 17.6$ M1 Or uses $h = 0, t = 0$ to evaluate $c = (-250)$ and then finds $h(2)$ $h = 17.6$ M1 [4] 6 (i) $\theta = \sin^{-1}(0.2/0.7) = 16.6^\circ$ with the vertical $\theta = 0.3g$ $T + T\sin \theta = 0.3\omega^2 \times 0.2$ M1 Uses Newton's Second Law radially			$\int dv/(10-0.2v) = \int dt$	M1		
			$-\ln(10 - 0.2v)/0.2 = t (+ c)$	A1		
$v = 50 - 50e^{-0.2t}$ (ii) $dx/dt = 50 - 50e^{-0.2t}$ $x = \int (50 - 50e^{-0.2t})dt$ $h = [50t + 50e^{-0.2t}/0.2]_{2}^{0}$ $h = 17.6$ M1 Or uses $h = 0$, $t = 0$ to evaluate $c = (-250)$ and then finds $h(2)$ $h = 17.6$ B1 $T = 3.13 \text{ Resolves vertically}$ $T + T \sin \theta = 0.3\omega^{2} \times 0.2$ M1 Uses Newton's Second Law radially			$t = 0$, $v = 0$, hence $c = -5\ln 10$	M1		-4.60517
$x = \int (50 - 50e^{-0.2t}) dt$ $x = 50t + 50e^{-0.2t}/0.2 \text{ (+c)}$ $h = [50t + 50e^{-0.2t}/0.2]_2^0$ $h = 17.6$ $6 (i) \theta = \sin^{-1}(0.2/0.7) = 16.6^{\circ} \text{ with the vertical}$ $T = 3.13 \text{ Resolves vertically}$ $T + T \sin \theta = 0.3\omega^2 \times 0.2$ $M1$ $M1$ $T = 3.13 \text{ Resolves vertically}$				A1	[6]	
$x = 50t + 50e^{-0.2t}/0.2 \text{ (+c)}$ $h = [50t + 50e^{-0.2t}/0.2]_2^0$ $h = 17.6$ M1 Or uses $h = 0$, $t = 0$ to evaluate $c = (-250)$ and then finds $h(2)$ $h = 17.6$ A1 $f(4)$ Or uses $h = 0$, $f(4)$ $f(5)$ $f(6)$ $f(6)$ $f(6)$ $f(7)$ f		(ii)	$dx/dt = 50 - 50e^{-0.2t}$			
$h = [50t + 50e^{-0.2t}/0.2]_2^0$ $h = 17.6$ $M1$ $Or uses h = 0, t = 0 \text{ to evaluate } c = (-250) \text{ and then finds } h(2)$ $6 \textbf{(i)} \theta = \sin^{-1}(0.2/0.7) = 16.6^{\circ} \text{ with the vertical}$ $T\cos\theta = 0.3g$ $T + T\sin\theta = 0.3\omega^2 \times 0.2$ $M1$ $Uses Newton's Second Law radially$			$x = \int (50 - 50e^{-0.2t}) dt$	M1		
$c = (-250) \text{ and then finds h(2)}$ $h = 17.6$ $A1 [4]$ $6 (i) \theta = \sin^{-1}(0.2/0.7) = 16.6^{\circ} \text{ with the vertical}$ $T\cos\theta = 0.3g$ $T + T\sin\theta = 0.3\omega^{2} \times 0.2$ $M1 Uses Newton's Second Law radially$			$x = 50t + 50e^{-0.2t}/0.2 \text{ (+c)}$	A1		
6 (i) $\theta = \sin^{-1}(0.2/0.7) = 16.6^{\circ}$ with the vertical B1 73.4° with the horizontal Tcos $\theta = 0.3$ g M1 T = 3.13 Resolves vertically T + Tsin $\theta = 0.3\omega^2 \times 0.2$ M1 Uses Newton's Second Law radially			$h = [50t + 50e^{-0.2t}/0.2]_{2}^{0}$	M1		
$T\cos\theta = 0.3g$ $T + T\sin\theta = 0.3\omega^2 \times 0.2$ M1 $T = 3.13 \text{ Resolves vertically}$ Uses Newton's Second Law radially			h = 17.6	A1	[4]	
T + Tsin $\theta = 0.3\omega^2 \times 0.2$ M1 Uses Newton's Second Law radially	6	(i)	$\theta = \sin^{-1}(0.2/0.7) = 16.6^{\circ}$ with the vertical	B1		73.4° with the horizontal
			$T\cos\theta = 0.3g$	M1		T = 3.13 Resolves vertically
$\omega = 8.19$ A1			$T + T\sin\theta = 0.3\omega^2 \times 0.2$	M1		Uses Newton's Second Law radially
			$\omega = 8.19$	A1		
KE $(=0.3 \times (8.19 \times 0.2)^2/2) = 0.402 \text{ J}$ A1 [5] Accept 0.403 J			KE $(=0.3 \times (8.19 \times 0.2)^2/2) = 0.402 \text{ J}$	A1	[5]	Accept 0.403 J

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9709	51

(ii) $(0.9 - AB)/AB = \frac{1}{2}$	M1	$\alpha = \tan^{-1}0.5 = 26.565^{\circ}$ or BC/(0.9–BC) = ½
AB = 0.6 m	A1	BC = 0.3 m
$T\cos\alpha - T\sin\alpha = 0.3g$	M1	Resolves vertically
T = 6.71	A1	
$T\cos\alpha + T\sin\alpha = 0.3\omega^2 \times 0.6\sin\alpha$	M1	$0.3\omega^2 \times 0.3\cos\alpha$ Uses Newton's Second Law radially
$\omega = 10.6$	A1 [6]	