

NOVEMBER 2002

GCE Advanced Level GCE Advanced Subsidiary Level

MARKSONEME

MAXINUM MARK: 50

SYLLABUS/COMPONENT :9709 /7, 8719 /7

MATHEMATICS (Probability and Statistics 2)

www.dynamicpapers.com

	WWW.	arriiopapore	
Page 1	Mark Scheme	Syllabus	Paper
	A & AS Level Examinations – November 2002	9709, 8719	7

$51.2 \pm 2.576 \times \sqrt{\frac{37.4}{120}}$	Ml		<u>r</u> + 7 <u>s</u>
1 $\sqrt{120}$	<u>.</u>		Calculation of correct form $\frac{\overline{x} \pm z \frac{s}{\sqrt{n}}}{\sqrt{n}}$
49.8 < \mu < 52.6	Bl -		Using $z = 2.576$
, , , , , , , , , , , , , , , , , , ,	Al	3	Or equivalent statement
2 (i) $0.015n = 2.55$			For equation linking n , p and mean
n = 170	M1 A1	2	For correct answer
(ii) mean = 210×0.015 (=3.15)	AI	4	For correct answer
	Bl		For new mean
$e^{-3.15}\left(1+3.15+\frac{3.15^2}{2}\right)$	DI .		1 of new mean
P(0) + P(1) + P(2) = 2	M1		For evaluating Poisson $P(0) + P(1) + P(2) + [P(3)]$
= 0.390 or 0.391	1771		
SR use of Binomial scores B1 for final correct	A1	3	For correct answer
answer 0.389	111	•	101 0011001 0115(101
	M1		
$\begin{vmatrix} z = \frac{64.3 - 65}{4.9 / \sqrt{n}} \\ = -1.807 \end{vmatrix}$	MI		For standardising equation = +/-1.807 with n or \sqrt{n}
	Al	3	Solving for <i>n</i>
n = 160	AI	3	For correct answer CWO.
m 17	Bl		
(ii) H_0 : $\mu = 65$ H_1 : $\mu < 65$	B1		For H ₀ and H ₁
Critical Value +/-1.645	M1		For +/-1.645 (or ft +/- 1.96 for two tail test)
Significant growth decrease	Al	4	Comparing given statistic with their CV
	AI	4	Correct conclusion
4 (i) H_0 : $\lambda = 4.8$ H_1 : $\lambda < 4.8$	B1		For both H ₀ and H ₁
Under H_0 $P(0) = e^{-4.8}$ (=0.00823)	M1		For evaluating P(0) and P(1) and P(2)
P(1) = 0.0395	1		
P(2) = 0.0948	M1		For stating/showing that $P(0) + P(1) + P(2) > 10\%$
Critical region is $X = 0$ or 1	Al		For critical region.
Not enough evidence to say road sign has	1		
decreased accidents	A1	5	Correct conclusion
SR If M0, M0 allow M1 for stating / showing			
P(0) + P(1) < 10%			
(ii) $P(Type\ I\ error) = P(0) + P(1)$	Ml		For identifying correct outcome
= 0.0477	Al	2	For correct answer
5 (i) new mean = 5.6	Bl		For new mean
$P(X+Y>3)=1-\{P(0)+P(1)+P(2)+P(3)\}$	Ml		For evaluating 1 – some Poisson probabilities
	1		
$= 1 - \frac{e^{-5.6} (1 + 5.6 + \frac{5.6^2}{2!} + \frac{5.6^3}{3!})}{1}$	A1		For correct expression
= 1 - 2: 3: = 0.809	Al	4	For correct answer
$\overline{X} \sim N(2.5, \frac{2.5}{80})$ or equiv. method using			
(ii) or equive method using	M1		For using normal distribution with mean 2.5 / 200
totals N(200, 200)	AI		For correct variance
$P(X<2.4) = \Phi\left(\frac{2.4-2.5}{\sqrt{(2.5/80)}}\right) \text{ or }$			
$\sqrt{\frac{\sqrt{(2.5/80)}}{800}}$	Ml		For standardising and using normal tables
$P(X<2.4) = (V(2.5) \circ 0) \text{ or } (1.5) \circ 0$	-		
(192-200)			
$\Phi\left(\frac{192-200}{\sqrt{200}}\right)$			
$=\Phi(-0.566)$			
	Al	4	For correct answer
= 1 - 0.7143 = 0.286	1		

Page 2	Mark Scheme	Syllabus	Paper		
		A & AS Level Examinations – November 2002	9709, 8719	7	ĺ

$\begin{cases} k \int_{1}^{28} \frac{1}{x^2} dx = 1 \\ k \left[\frac{-1}{x} \right]_{1} = 1 \end{cases}$ M1 For equating to 1 and attempt to independent of the properties of the p	ntegrate
$ \begin{array}{c c} $	
$k \left\lceil \frac{-1}{2} \right\rceil$	
"1 1 I	
į į	,
$k\left[\frac{1}{20} - \frac{1}{28}\right] = 1$ $\Rightarrow k = 70$ A1 3 For given answer correctly decimals seen).	obtained (no
(ii) $E(X) = \begin{pmatrix} 28 \\ 1 \\ 20 \end{pmatrix} = k[\ln x]$ $M1$ For attempt to evaluate $\begin{pmatrix} 28 \\ 1 \\ 20 \end{pmatrix} = k[\ln x]$	
00 / 00 / 701. 1 / 701 /7/E)	
= 23.6, 23.5, $70 \ln 1.4$, $70 \ln (7/5)$ A1 For correct integration	•
A1 3 For correct answer	
$\int_{0}^{23.55} \frac{70}{x^2} dx$	l v
(iii) $P(X < E(X)) = \frac{x^2}{20}$ = 0.528 (accept 0.534 from 23.6) M1 For attempt to evaluate $\int \frac{x^2}{x^2} dx$	tx between their
(0.521 23.5)	
Al 2 For correct answer	
(iv) Greater Brob in (iii) is > 0.5 B1ft For correct statement	
Prob in (iii) is > 0.5 B1ft 2 For correct statement For correct reason. Follow throu	gh from (iii)
or calculating med. = 23.3	
7 (i) $W \sim N(17.6, 0.133(2))$ B1 For correct mean	
$\begin{array}{c c} (18-17.6) & B1 & For correct variance \\ \hline D & A & A & A & A & A & A & A & A & A &$	
$\Phi\left(\frac{18-17.6}{\sqrt{0.1332}}\right) = 0.8633$ B1 For correct variance For standardising and using table	es
$\Phi\left(\frac{17-17.6}{\sqrt{0.1332}}\right) = 1 - 0.9499 \ (= 0.0501)$ $A1 = 5$ For standardising and using table and using table for correct answer	es
$\sqrt{0.1332}$ = 1 - 0.9499 (= 0.0501) A1 5 For correct answer	
0.8633 - 0.0501 = 0.813	
(ii) Wt diff $D \sim N(0, 0.0072)$ B1 For correct mean and variance	, -
$1-\Phi$ 0.05 M1 For standardising and using table	es
$P(D>0.05) = \sqrt{0.0072} = 1 - \Phi(0.589)$	
= 0.278 A1 For 0.278 (could be implied)	·
P(D < 0.05) = 0.278 M1 For finding the other probability 0.278 + 0.278 = 0.556 A1 5 For correct answer	•
0.278 + 0.278 = 0.556 Al 5 For correct answer	