

NOVEMBER 2002

GCE Advanced Subsidiary Level

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT:9709/2

MATHEMATICS (Pure 2)

www.dynamicpapers.com

Page 1	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2002	9709	2

1				
	EITHER:	State or imply non-modular inequality $(2x-1)^2 < (3x)^2$, or corresponding equation	B1	o
		Expand and make reasonable solution attempt at $2/\sqrt{9}$ 3-term quadratic, or equivalent Obtain critical values -1 and $\frac{1}{5}$	M1 A1	U
			Al	
	OB.	State correct answer $x < -1$, $x > \frac{1}{5}$	M1	0
	OR:	State due correct equation/for a critical value e.g. $2x - 1 = 3x$ State two relevant equations separately e.g. $2x - 1 = 3x$ and $2x - 1 = -3x$	Al	
		Obtain critical values -1 and $\frac{1}{5}$	A1	
		State correct answer $x < -1$, $x > \frac{1}{5}$	Al	٠.
	OR:	State one critical value (probably $x = -1$), from a graphical method or by inspection or by	,	
		solving a linear inequality	B1	
		State the other critical value correctly	B2 B1	4
		State correct answer $x < -1$, $x > \frac{1}{5}$	DI	4
٠.		[The answer $\frac{1}{5} < x < -1$ scores B0.]		
	C+-+	Note in $2+a+b=0$ or agriculant	B 1	
		btain $-2 + a + b = 0$, or equivalent a = x = -2 and equate to -5	M1	
		term equation, or equivalent	Al	
		elevant pair of equations, obtaining a or b	Ml	
	Obtain bo	oth answers $a = 3$ and $b = -1$	Al	. 5
3	(i) State	or imply that $9^x = y^2$	B1	1
		out recognisable solution method for quadratic in y	Ml	_
		$y = \frac{1}{2}$ and $y = 3$ from $2y^2 - 7y + 3 = 0$	Al	
,		og method to solve an equation of the form $3^x = k$	M1	
	Obtai	n answer $x = -\frac{\ln 2}{\ln 3}$, or exact equivalent $\{ l_0, \lambda_0 \}$	Al"	•
	State	exact answer $x = 1$ (no penalty if logs used)		
	State	• (t - (t)	B1	5
				5
4		recognisable sketches over the given range of a suitable pair of graphs e.g. $y = \sin x$ and $y = \frac{1}{2}$	Bl Bl	<u> </u>
4	(i) Make			2
1	(i) Make State	recognisable sketches over the given range of a suitable pair of graphs e.g. $y = \sin x$ and $y = \frac{1}{x^2}$	Bl	
4	(i) Make State (ii) Calcu	recognisable sketches over the given range of a suitable pair of graphs e.g. $y = \sin x$ and $y = \frac{1}{x^2}$ or imply connection between intersections and roots and justify given statement	B1 B1	
f .	(i) Make State (ii) Calcu Deriv	recognisable sketches over the given range of a suitable pair of graphs e.g. $y = \sin x$ and $y = \frac{1}{x^2}$ or imply connection between intersections and roots and justify given statement slate values (or signs) of $\sin x - \frac{1}{x^2}$ at $x = 1$ and $x = 1.5$ we given result correctly	B1 B1 M1	2
	(i) Make State (ii) Calcu Deriv (iii) Rearr	recognisable sketches over the given range of a suitable pair of graphs e.g. $y = \sin x$ and $y = \frac{1}{x^2}$ or imply connection between intersections and roots and justify given statement slate values (or signs) of $\sin x - \frac{1}{x^2}$ at $x = 1$ and $x = 1.5$ we given result correctly range $\sin x = \frac{1}{x^2}$ and obtain given answer	B1 B1 M1 A1 B1	2
	(i) Make State (ii) Calcu Deriv (iii) Rearr (iv) Use the Obtain	recognisable sketches over the given range of a suitable pair of graphs e.g. $y = \sin x$ and $y = \frac{1}{x^2}$ or imply connection between intersections and roots and justify given statement slate values (or signs) of $\sin x - \frac{1}{x^2}$ at $x = 1$ and $x = 1.5$ be given result correctly range $\sin x = \frac{1}{x^2}$ and obtain given answer the iterative formula correctly with $1 \le x_n \le 1.5$ in final answer 1.07	B1 B1 M1 A1	2
	(i) Make State (ii) Calcu Deriv (iii) Rearr (iv) Use the Obtain Show	recognisable sketches over the given range of a suitable pair of graphs e.g. $y = \sin x$ and $y = \frac{1}{x^2}$ or imply connection between intersections and roots and justify given statement elate values (or signs) of $\sin x - \frac{1}{x^2}$ at $x = 1$ and $x = 1.5$ we given result correctly range $\sin x = \frac{1}{x^2}$ and obtain given answer the iterative formula correctly with $1 \le x_n \le 1.5$	B1 B1 M1 A1 B1	2

www.dynamicpapers.com

Page 2	Mark Scheme	Syllabus	Paper
	AS Level Examinations – November 2002	9709	2

Collect terms and obtain given answer correctly (ii) Carry out correct processes to evaluate a single trig ratio Obtain answer 73.9° Obtain second answer 253.9° and no others Al \checkmark 3 (iii) State or imply that $\cos^2 \tilde{x} = \frac{1}{13}$ or $\sin^2 x = \frac{12}{13}$ Use a relevant trig formula to evaluate $\cos 2x$ M1	(i)	Use relevant formulae for $\cos(x-30^\circ)$ and $\sin(x-60^\circ)$ $\left\{\begin{array}{cccccccccccccccccccccccccccccccccccc$		M1* M1(dep	ı*)
Use a relevant trig formula to evaluate $\cos 2x$ M1		Collect terms and obtain given answer correctly Carry out correct processes to evaluate a single trig ratio Obtain answer 73.9° Obtain second answer 253.9° and no others	٠	Al Ml Al Al	3
13				M1 A1	3

6 (a) Obtain indefinite integral $-\frac{1}{2}\cos 2x + \sin x$		B1 + B1	
Use limits with attempted integral		M1	
Obtain answer 2 correctly with no errors		A1	4
(b) (i) Identify R with correct definite integral and attempt to integrate		M1	
Obtain indefinite integral $\ln (x+1)$		B 1	
Obtain answer $R = \ln(p+1) - \ln 2$		A1	3
(ii) Use exponential method to solve an equation of the form $\ln x = k$		Ml	
Obtain answer $p = 13.8$		Al	2

			٠
7	(i) State $6y \frac{dy}{dx}$ as the derivative of $3y^2$	ВІ	
	State $\pm 2x \frac{dy}{dx} \pm 2y$ as the derivative of $-2xy$ (allow any combination of signs here)	B1 4	
	Equate attempted derivative of LHS to 0 (or 10) and solve for $\frac{dy}{dx}$	Ml	
	Obtain the given answer correctly	A 1 .	4
	[The M1 is dependent on at least one of the B marks being earned.] (ii) State or imply the points lie on $y-2x=0$ $ex/(y-3-x)=0$ Carry out complete method for finding one coordinate of a point of intersection of $y=kx$ with the	Bi	O
	given curve	Ml	
	Obtain $10x^2 = 10$ or $2\frac{1}{2}y^2 = 10$ or 2-term equivalent	ΑI	
	Obtain one correct point e.g. $(1,2)$ or ∂ values of ∂ $(vr y)$ Obtain a second correct point e.g. $(-1,-2)$	Al A	⊙