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1 The function f is such that f ′�x� = 5 − 2x2 and �3, 5� is a point on the curve y = f�x�. Find f�x�. [3]
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In the diagram, AYB is a semicircle with AB as diameter and OAXB is a sector of a circle with centre

O and radius r. Angle AOB = 21 radians. Find an expression, in terms of r and 1, for the area of the

shaded region. [4]

3 (i) Find the coefficients of x2 and x3 in the expansion of �2 − x�6. [3]

(ii) Find the coefficient of x3 in the expansion of �3x + 1��2 − x�6. [2]

4 Variables u, x and y are such that u = 2x�y − x� and x + 3y = 12. Express u in terms of x and hence

find the stationary value of u. [5]

5 (i) Prove the identity
sin 1 − cos1

sin 1 + cos1
�

tan1 − 1

tan1 + 1
. [1]

(ii) Hence solve the equation
sin 1 − cos1

sin 1 + cos1
=

tan 1

6
, for 0Å ≤ 1 ≤ 180Å. [4]

6 A tourist attraction in a city centre is a big vertical wheel on which passengers can ride. The wheel

turns in such a way that the height, h m, of a passenger above the ground is given by the formula

h = 60�1 − cos kt�. In this formula, k is a constant, t is the time in minutes that has elapsed since the

passenger started the ride at ground level and kt is measured in radians.

(i) Find the greatest height of the passenger above the ground. [1]

One complete revolution of the wheel takes 30 minutes.

(ii) Show that k = 1
15
0. [2]

(iii) Find the time for which the passenger is above a height of 90 m. [3]
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7 The point C lies on the perpendicular bisector of the line joining the points A �4, 6� and B �10, 2�.

C also lies on the line parallel to AB through �3, 11�.

(i) Find the equation of the perpendicular bisector of AB. [4]

(ii) Calculate the coordinates of C. [3]

8 (a) The first, second and last terms in an arithmetic progression are 56, 53 and −22 respectively.

Find the sum of all the terms in the progression. [4]

(b) The first, second and third terms of a geometric progression are 2k + 6, 2k and k + 2 respectively,

where k is a positive constant.

(i) Find the value of k. [3]

(ii) Find the sum to infinity of the progression. [2]

9 Relative to an origin O, the position vectors of points A and B are given by

−−→
OA = 2i + 4j + 4k and

−−→
OB = 3i + j + 4k.

(i) Use a vector method to find angle AOB. [4]

The point C is such that
−−→
AB =

−−→
BC.

(ii) Find the unit vector in the direction of
−−→
OC. [4]

(iii) Show that triangle OAC is isosceles. [1]

10 The equation of a curve is y =
4

2x − 1
.

(i) Find, showing all necessary working, the volume obtained when the region bounded by the

curve, the x-axis and the lines x = 1 and x = 2 is rotated through 360Å about the x-axis. [4]

(ii) Given that the line 2y = x + c is a normal to the curve, find the possible values of the constant c.

[6]

11 The function f is defined by f : x  → 2x2
− 6x + 5 for x ∈ >.

(i) Find the set of values of p for which the equation f�x� = p has no real roots. [3]

The function g is defined by g : x  → 2x2
− 6x + 5 for 0 ≤ x ≤ 4.

(ii) Express g�x� in the form a�x + b�2
+ c, where a, b and c are constants. [3]

(iii) Find the range of g. [2]

The function h is defined by h : x  → 2x2
− 6x + 5 for k ≤ x ≤ 4, where k is a constant.

(iv) State the smallest value of k for which h has an inverse. [1]

(v) For this value of k, find an expression for h−1�x�. [3]
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