CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9709 MATHEMATICS

9709/43

Paper 4 (Mechanics 1), maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	WW\	www.dynamicpapers.com		
Page 2	Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL – May/June 2014	9709	43	

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √^h implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9709	43

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR –2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

		Marila O a la			WWW.	dynamicpap Syllabus	ers.com Paper	
P	Page 4		Mark Scheme GCE AS/A LEVEL – May/June 2014					
			viay/Juli	<u> 201-</u>	•	9709	43	
1 (i)	i) $[N + \text{component of } X = \text{Weight of } B]$		M1		For resolving forces acting on the bl vertically (3 terms required)			
	Normal co	omponent is (70 – Xcos15°) N	A1	[2]				
(ii)	F = Xsin1	5°	B1					
	[Xsin15° =	$= 0.4(70 - X\cos 15^{\circ})]$	M1		For usin	$g F = \mu R$		
	Value of 2	X is 43.4	A1	[3]				
2			M1		For usin	g Newton's 2 nd la	W	
	DF - 600	$-1250 \times 0.02g = 1250 \times 0.5$	A1					
			M1		For usin	g DF = 23000/v		
	v = 23000	\div (625 + 600 + 250)	A1ft		ft error in one term for DF above (1 st A mark)			
	Speed of c	car is $15.6 \mathrm{ms}^{-1}$	A1	[5]				
		Altern	ative Me	thod				
			M1			g WD by driving n + WD against r	-	
	WD = 125	$0 \times 0.5s + 1250g \times 0.02s + 600s$	A1					
			M1		For usin and DF=	g WD by driving =23000/v	force = $DF \times s$	
	v = 23000	\div (625 + 600 + 250)	A1ft		ft error in one term for WD above (1 st A mark)			
	Speed of c	car is $15.6 \mathrm{ms}^{-1}$	A1	[5]				
3			M1		For reso horizont	lving forces actin ally.	g on P	
	$0.8T_1 + 12$	$T_2/13 = 2.24$	A1					
			M1		For resol	ving forces acting	on P vertically.	
	$0.6T_1 - 5T_1$	$\Gamma_2/13 = 1.4$	A1					
			M1		For solv	ing for T_1 and T_2		
	$T_1 = 2.5 an$	<u>nd</u> $T_2 = 0.26$	A1	[6]				
					2.24 N (T ₁ /sin15 T ₂ /sin14	sing Lami's Rule weight missing) ($7.38 = 2.24/\sin 59$ $3.13 = 2.24/\sin 59$ 00) and T ₂ = 1.56	max 3/6) 9.49 B1 9.49 B1	

Page 5		Mark Scl	neme			dynamicpape Syllabus	Paper
		GCE AS/A LEVEL – May/June 2014				9709	43
4 (i)	$PE \log = 0$	$0.4 \text{g} \times 5 \text{ J} = 20 \text{ J}$	B1				
• (1)		$_{\rm p} = 0.4 {\rm g} \times 5 - 12.8 = 7.2 {\rm J}$	B1				
	[0.4gh = 2g]		M1		Lises PE	gain = KE loss to	form equation
	[0.4gii – 23	g – 12.0J	1011		in h	gain – KE 1055 to	ionn equation
	Height read	ched is 1.8 m	A1	[4]	AG		
(ii)	$5 = 0 + \frac{1}{2}$	gt_{down}^2 ($t_{down} = 1$)	B1				
	$0 = 6 - gt_{up}$, or $1.8 = \frac{1}{2} \operatorname{gt_{up}}^2(t_{up} = 0.6)$	B1				
	Total time	is 1.6 s	B1	[3]			
		First Alte	ernative fo	r part	(i)		
	$v^2 = 2 \times 10$	$0 \times 5 \rightarrow (v = 10)$	B1				
	KE loss =	$\frac{1}{2} 0.4(10^2 - {v_{up}}^2) = 12.8$	B1				
	$[v_{up} = 60,$	$0 = 6^2 - 2gh$]	M1		Uses v ² :	= u ² – 2gs to form	equation in h
	Height read	ched is 1.8 m	A1	[4]	AG		
		Second Al	ternative f	for par	t (i)		
	0.4gh = 12	.8	M1		Uses PE	gain = KE loss	
	h = 3.2 m		A1				
	[Height rea	ached = 5 - 12.8/0.4g]	M1			ght reached = ght not reached'	
	Height read	ched is 1.8 m	A1	[4]	AG		
		Third Alt	ernative f	or part	: (i)		
	$\frac{1}{2} \times 0.4 v^2$	= 12.8 (v=8) and	M1		Uses KE	$E \log = 12.8$ and v	$^2=u^2+2gs$
	$[8^2 = 0^2 + 2]$	2gh]					
	h = 3.2 m		A1				
	[Height rea	ached = $5 - 3.2$]	M1			ght reached = ght not reached'	
	Height read	ched is 1.8 m	A1	[4]	AG		

Р	age 6	Mark Sche	me			.dynamicpap Syllabus	Paper
•	GCE AS/A LEVEL – May/June 2014					9709	43
5 (i)			M1			g WD by driving D against resistan	
	•	the set of	A1			C	
	WD agair	nst resistance = 2.52×10^6 J	A1	[3]			
		Alternative I	Method	for par	rt (i)		
	[R + 1600	$00g \times 18/1200 = 4500$]	M1		For reso	lving along the pl	ane
	[WD=(45	00 – 16000g × 18/1200) × 1200]	M1		For usin	g WD against resi	istance = Rs
	WD agair	nst resistance = 2.52×10^6 J	A1	[3]			
(ii)	KE gain =	$= \frac{1}{2} \ 16000(21^2 - 9^2) \ \mathrm{J}$	B1				
			M1		For usin 2400	g F = (KE gain +	2000 × 2400) ÷
	F = 76800	000 ÷ 2400 = 3200	A1	[3]	Newton $21^2 - 9^2$	(a 1/3) for using v^2 (b) $2^{nd} law$ (c) $= 2a \times 2400, a = 0$ (c) $= 16000 \times 0.075$ (c) B1	
(iii)		$00 + 1280) \times 9$ and $P_B = 280) \times 21$]	M1		For usin	g P = Fv to find P	$P_{\rm A}$ and $P_{\rm B}$
	$P_A = P_B =$	40320 W	A1	[2]			
6 (i)	Velocity i	immediately before is 1.2 ms ⁻¹	B1				
	Velocity i	immediately after is -1 ms^{-1}	B1	[2]			
(ii)			M1		0 to 60 (W is wa	g distance $WA =$	
	Distance 0.0005 ×	$OW = 0.025 \times 60^2 - 60^3 \div 3$	A1				
		$WA = 5 \times 100^{2} - 2.5 \times 100) - 60^{2} - 2.5 \times 60]$	A1				
	Distance	is $54 + 20 = 74$ m	A1	[4]			

	www.dynamicpapers.com								
Р	age 7	Mark Sche	Syllabus	Paper					
		GCE AS/A LEVEL – N	9709	43					
					1				
(iii)	ii) $[dv/dt = 0.05 - 0.001t = 0 \text{ or} \\ 0.0005t(100 - t) = 0 \rightarrow t = 0 \text{ or } 100]$		whe			For using v_{max} occurs when $dv/dt = 0$ or when t = the midpoint of the roots of the quadratic equation $v = 0$.			
	Maximum s $(= 0.05 \times 50)$	speed $0 - 0.0005 \times 50^2$) is $1.25 \mathrm{ms}^{-1}$	A1						
		hadratic curve starting at $(0,0)$, t (50, 1.25) and terminating at	B1						
	Straight line to (100,0)	e segment from (60,-1)	B1	[4]					
7 (i)			M1		For apply	ving Newton's 2 nd	law to P or to Q		
	For $T - (40)$ 0.49g - T =	$(\div 160) \times 0.76g = 0.76a$ or 0.49a	A1						
	$T - (40 \div 10)$	$T = 0.49a \underline{or}$ $60) \times 0.76g = 0.76a \underline{or}$ $0 \div 160) \times 0.76g =$ 60a	B1						
		n is 2.4 ms^{-2} is 3.72 N (3.724 exact)	A1	[4]					
(ii)	$[v^2 = 2 \times 2.4]$	4×0.3]	M1		For using	$g v^2 = 0 + 2as$			
	Speed is 1.2	$20\mathrm{ms}^{-1}$	A1ft	[2]	ft a from	(i) (a≠±g)			
(iii)			M1			$g v^2 = u^2 + 2as$ h v = 0 and $a = -(40 \div 160)$)g		
		hile Q is on the ground $(0.3) \div 2(40g \div 160)$	A1ft		ft a from	(i) and/or s = 30			
	Distance tra	welled is 0.588 m	A1	[3]					