UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2008 question paper

9709 MATHEMATICS

9709/06

Paper 6, maximum raw mark 50

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	WW	www.dynamicpapers.com		
Page 2	Mark Scheme	Syllabus	Paper	
	GCE A/AS LEVEL – May/June 2008	9709	06	

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Page 3 Mark Scheme		Paper
	GCE A/AS LEVEL – May/June 2008	9709	06

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

	Page	e 4	Ма	irk Scheme		Syllabus Paper
				VEL – May/June 2	2008	
1	(i)	median = LQ = 16 n	16 th along = 24 ot 15.5	B1 B1	2	
	(ii)	UQ = LQ $x = 5$	+ 19 = 35	M1 A1	2	For adding 19 to their LQ in whatever form Must be 5 not 35. c.w.o.
2	(i)	P(A) = 0.2		B1	1	o.e. Must be single fraction or 20%
	(ii)	P(not S) = $= 0.42$	$0.2 \times 0.7 + 0.8 \times 0.35$	M1 A1	2	Summing two 2-factor probabilities or subtracting P(S) from 1 o.e. Correct answer no decimals in fractions
	(iii)	$P(B \mid S') =$	$=\frac{0.8\times0.35}{0.42}$	M1		$\frac{(1 - \text{their}(i)) \times 0.35}{\text{their}(ii)}$ if marks lost in (i) or (ii)
		= 0.667		A1	2	Correct answer c.w.o
3	(i)	3! ×8!×9		M1 M1		For k3! seen, k a +ve integer, accept $_{3}P_{3}$ For using m8! or n9! Seen, m and n +ve integers, accept $m_{8}P_{8}$ etc
		= 2,177,28	80 or 2,180,000	A1	3	Correct final answer
	(ii)	$_{6}C_{2} \times _{3}C_{2} \times$	₂ C ₁	M1		Multiplying 3 combinations or 3 numbers or 3 permutations together only
		= 90		B1 A1	3	All of ${}_{6}C_{2}$ and ${}_{3}C_{2}$ and ${}_{2}C_{1}$ seen (15, 3, 2) Correct answer
4	(i)	- 0.674 =	$=\frac{7-\mu}{2.6}$	B1 M1		\pm 0.674 seen only Standardising must have a recognisable z- value, no cc and 2.6
				M1		For solving their equation with recognisable z-value, μ and 2.6 not
		$\mu = 8.75$		A1	4	1 – 0.674 or 0.326, allow cc Correct answer
	(ii)	P(X > 6.2)	$= P\left(z > \frac{6.2 - 6.5}{2.6}\right)$	M1		Standardising, no cc on the 6.2
		= P(z > -0)	0.1154)	M1		prob > 0.5

www.dynamicpapers.com

			WWW.			
Page 5			Mark Scheme			
		GCE A/AS LEVEL – May	/June 200	08 9709 06		
5 (i)		fd: 22, 30, 18, 30, 14 fd 4 20 10 0 1 2 3 4 5 time	M1 A1 B1 B1 B1 5	Attempt at freq density or scaling correct heights seen on graph Bar lines correctly located at 0.55, 1.05, 2.05, 3.05, no gaps correct widths of bars both axes uniform from at least 0 to 15 or 30, and 0.05 to 4.5 and labelled, (fd, or freq per half hour, time, hours, <i>t</i>)		
	(ii)	mid-points 0.3, 0.8, 1.55, 2.55, 3.8 = 199.5 / 95 mean = 2.1 hours	M1 M1 A1 3	 an attempt at mid-points (not class widths) using (Σ their fx) / their 95 correct answer from 199.5 in num 		
6	(i)	A 0.5 A 0.5 A	M1	4 or 5 pairs A and U seen no extra bits but condone (0, 1) branches after any or all As.		
		0.5 075 A U 0.5	A1	Exactly 4 pairs of A and U, must be labelled		
		$\begin{array}{c} 0.5 \\$	A1 3	Correct diagram with all probs correct, allow A1ft for 4 correct pairs and (0,1) branch(es) or A1ft for 5 correct pairs and no (0, 1) branch(es)		
	(ii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1 B1 B1 B1 4	P(0) correct P(2) correct P(3) correct P(4) correct		
+	(iii)	E(X) = 15/16 (0.938 or 0.9375)	M1 A1 2	attempt at $\Sigma(xp)$ only with no other numbers correct answer		

				www.dynamicpapers.com				
e 6 Mark Scheme					Syllabus	Paper		
GCE A/AS LEVEL – May/J		une 2008			9709	06		
(0.05)(0.75)(0.15) = 0.00563 (9 / 1600)		M1 B1 A1	3	Multiplying 3 probs only, no Cs 0.05 or 0.15 or $1/5 \times \frac{1}{4}$ seen Correct answer				
P(at least 8) = P(8, 9, 10) = $_{10}C_8(0.75)^8(0.25)^2 + _{10}C_9(0.75)^9(0.25) + (0.75)^{10}$ = 0.526		B1 M1 A1	3	Binomial expression involvi $(0.75)^r (0.25)^{10-r}$ and a C, $r \neq 0$ or 10 Correct unsimplified expression can implied Correct answer				

B1

M1

M1

M1

A1

5

59.5

 $90 \times 0.75(67.5)$ and

must have $\sqrt{}$ on denom

 $90 \times 0.75 \times 0.25$ (16.875 or 16.9) seen

For standardising , with or without cc,

For use of continuity correction 60.5 or

For finding an area > 0.5 from their *z*

For answer rounding to 0.956

Page 6

 $\mu = 90 \times 0.75 = 67.5$

P(X > 60)

= 0.956

 $\sigma^2 = 90 \times 0.75 \times 0.25 = 16.875$

 $= 1 - \Phi\left(\frac{60.5 - 67.5}{\sqrt{16.875}}\right) = \Phi(1.704)$

7

(i)

(ii)

(iii)

© UCLES 2008