CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2014 series

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

		www.dynamicpapers.o			
P	age 2	Mark SchemeSyllabusCambridge International AS/A Level – October/November 20149702	Pap 22		
1		ess = Young modulus × strain			
		= $1.8 \times 10^{11} \times 8.2 \times 10^{-4}$ or 1.476×10^{8}	C1		
		= 0.15 (0.148) GPa	A1	[2]	
	(b) (i)	wavelength = $3 \times 10^8 / 12 \times 10^{12}$ = $25 \mu m$	C1 A1	[2]	
	(ii)	infra-red/IR	B1	[1]	
	(c) (i)	arrow drawn up to the left of 7.5 N force approximately 5° to 40° to west of north	A1	[1]	
	(ii)	 correct vector triangle or working to show magnitude of resultant force = 6.6 N allow 6.5 to 6.7 N if scale diagram 	M1	[1]	
		2. magnitude of acceleration = 6.6 / 0.75 [scale diagram: (6.5 to 6.7) / 0.75]	C1		
		= 8.8 m s ⁻² [scale diagram: 8.7 – 8.9 m s ⁻²]	A1	[2]	
	(iii)	19° [use of scale diagram allow 17° to 21° (a diagram must be seen)]	B1	[1]	
2	(a) (i)	straight line from $t = 0.60$ s to $t = 1.2$ s and $ V_v = 5.9$ at $t = 1.2$ s $V_v = -5.9$ at $t = 1.2$ s i.e. line is for negative values of V_v	M1 A1	[2]	
	(ii)	$s = 0 + \frac{1}{2} \times 9.81 \times (0.6)^2$ or area of graph = $(5.9 \times 0.6) / 2$	C1		
		= 1.8 (1.77) m = 1.8 (1.77) m	A1	[2]	
	(iii)	$V_{\rm h} = V \cos 60^{\circ} \text{ and } V_{\rm v} = V \sin 60^{\circ} \text{ or } V_{\rm h} = 5.9 \text{ / } \tan 60^{\circ} \text{ or } V_{\rm h} = 5.9 \tan 30^{\circ}$	C1		
		$V_{\rm h} = 3.4 {\rm ms^{-1}}$	A1	[2]	
	(iv)	horizontal line at 3.4 from $t = 0$ to $t = 1.2$ s [to half a small square]	B1	[1]	
	(b) (i)	$KE = \frac{1}{2}mv^2$	C1		
		= $\frac{1}{2} \times 0.65 \times (6.81)^2$ [allow if valid method to find v]	C1		
		= 15 (15.1)J	A1	[3]	
	(ii)	PE = $0.65 \times 9.81 \times 1.77$	C1		
		= 11(11.3) J	A1	[2]	

— —		www.dynamicpape		
P	age 3	Mark SchemeSyllabuCambridge International AS/A Level – October/November 20149702		
3	(a) e	lectric field strength is force per unit positive charge	B1	[1]
	(b) n	nass = volume × density (any subject, allow usual symbols or defined symbol	s) C1	
		= $4/3 \times \pi \times (1.2 \times 10^{-6})^3 \times 930$ (= 6.73×10^{-15})		
	W	reight = $4/3 \times \pi \times (1.2 \times 10^{-6})^3 \times 930 \times 9.81 = 6.6 \times 10^{-14} \text{ N}$	M1	[2]
	(c) ($E = 1.9 \times 10^3 / 14 \times 10^{-3}$ = 1.4 (1.36) × 10 ⁵ V m ⁻¹	C1 A1	[2]
	(i) F = QE		
		Q = $6.6 \times 10^{-14} / 1.36 \times 10^{5}$ = 4.9 (4.86) × 10^{-19} C [allow 4.7 × 10^{-19} C if 1.4 × 10^{5} used]	C1 A1	[2]
	(ii	 <u>electric</u> force increases/is greater (than weight) charge (on S) is negative to give resultant/net/sum/total force up 	B1 B1	[2]
4	(a) (solid: (molecules) vibrate no translational motion/fixed position, liquid: translational motion 	B1 B1	[2]
	(i) gas: molecules have random (and translational) motion	B1	[1]
	(b) () ductile: straight line through origin then curving towards <i>x</i> -axis	B1	[1]
	(i) brittle: straight line through origin with no or negligible curved region	B1	[1]
	(c) s	imilarity: obey Hooke's law / $F \propto x$ or have elastic regions	B1	
	d	ifference: brittle no or (very) little plastic region ductile has (large(r)) plastic region	B1	[2]
5	(a) () in series 2X <u>or</u> in parallel X/2 other relationship given <u>and</u> 4× greater in series (than in parallel)	M1 A1	[2]
	(i) due to the internal resistance	B1	
		total resistance for series circuit is not four times greater than resistance for parallel circuit	B1	[2]
	(ii	1. $E = I_1(2X + r)$ or $12 = 1.2(2X + r)$	A1	
		2. $E = I_2(X/2 + r)$ or $12 = 3.0(X/2 + r)$	A1	[2]
	(iv	2X + r = 10 and X/2 + r = 4 X = 4.0Ω	A1	[1]

			www.dynamicpapers.com					
Pa	ge 4			Mark Scheme		Syllabus	Pap	
		(ambridge Interna	tional AS/A Level – October/No	vember 2014	9702	22	
	(b)	P =	$I^2 R$ or V^2 / R or $V I$				C1	
		ratio	$p = [(1.2)^2 \times 4] / [(12)^2 \times 4] /$	1.5) ² × 4]			A1	[2]
	(c)	the	resistance (of a lan	np) changes with <i>V</i> or <i>I</i>			B1	
			•	allel circuit or circuit 2			54	101
		or V or I is less in series circuit or circuit 1			B1	[2]		
6	(a)	difference: vibration/oscillation (of particles)/displacement of particles is parallel to energy transfer/wavefronts in longitudinal and perpendicular for transverse or						
		transverse can be polarised, longitudinal cannot be polarised						
		sim	ilarity: both transfer	/propagate energy			B1	[2]
	(b)	(i)	waves overlap (at maxima where pha	re coherent/constant phase relati screen) with a phase difference o ase difference is integer ×360° (or	or have a path d	ifference	(B1) (B1)	
			<i>or</i> path difference is integer ×λ <i>or</i> equivalent explanation of minima e.g. (<i>n</i> +½)×360° max. 2			(B1)	[2]	
		(ii)	maxima spacing	$= \lambda D / a$			C1	
				= $(6.3 \times 10^{-7} \times 2.5) / 0.35 \times 10^{-3}$ = 4.5×10^{-3} m		A1	[2]	
(c)		(ulti	a-violet has) short <u>e</u>	e <u>r</u> wavelength, hence small <u>er</u> sepa	aration/distance	e	A1	[1]
7	(a)	(i)	A: 206, nucleon(s) B: 82, proton(s)	or neutron(s) <u>and</u> proton(s) }	all correct		A1	[1]
		(ii)	kinetic/ <i>E</i> _K /KE				B1	[1]
	(b)	ene	rgy = 5.3 × 1.6 × 1	$0^{-13}(J)$ [= 8.48 × $10^{-3}(J)$]			C1	
		pov	$ver = (7.1 \times 10^{18} \times 10^{18})$	$5.3 imes 1.6 imes 10^{-13})$ / (3600 $ imes$ 24)				
		•	,	, , , , , , , , , , , , , , , , , , , ,			۸ ۸	101
			= 70 (69.7)W				A1	[2]