CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

www.dynamicpapers.com

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9702	42

Section A

1	(a)	work done in moving unit mass from infinity (to the point)			
	(b)	(i)	gravitational potential energy = GMm / x energy = $(6.67 \times 10^{-11} \times 7.35 \times 10^{22} \times 4.5) / (1.74 \times 10^{6})$ energy = 1.27×10^{7} J	M1 A0	[1]
		(ii)	<u>change in</u> grav. potential energy = <u>change in</u> kinetic energy $\frac{1}{2} \times 4.5 \times v^2 = 1.27 \times 10^7$	B1	
			$v = 2.4 \times 10^3 \mathrm{m s^{-1}}$	A1	[2]
	(c)	/ at	th would attract the rock / potential at Earth('s surface) not zero / <0 Earth, potential due to Moon not zero cape speed would be lower	M1 A1	[2]
2	(a)	(i)	N: (total) number of molecules	B1	[1]
		(ii)	$< c^2 >$: mean square speed/velocity	B1	[1]
	(b)	, (me	= $\frac{1}{3}Nm < c^2 > = NkT$ ean) kinetic energy = $\frac{1}{2}m < c^2 >$ ebra clear leading to $\frac{1}{2}m < c^2 > = (3/2)kT$	C1 A1	[2]
	(c)	(i)	either energy required = $(3/2) \times 1.38 \times 10^{-23} \times 1.0 \times 6.02 \times 10^{23}$ = $12.5 \text{ J} (12J \text{ if } 2 \text{ s.f.})$ or energy = $(3/2) \times 8.31 \times 1.0$ = 12.5 J	C1 A1 (C1) (A1)	[2]
		(ii)	energy is needed to push back atmosphere/do work against atmosphere so total energy required is greater	M1 A1	[2]
3	(a)	(i)	any two from 0.3(0) s, 0.9(0) s, 1.50 s (allow 2.1 s etc.)	B1	[1]
		(ii)	either $v = \omega x$ and $\omega = 2\pi/T$ $v = (2\pi/1.2) \times 1.5 \times 10^{-2}$ $= 0.079 \text{ m s}^{-1}$ or gradient drawn clearly at a correct position working clear to give $(0.08 \pm 0.01) \text{ m s}^{-1}$	C1 M1 A0 (C1) (M1) (A0)	[2]

www.dynamicpapers.com
Syllabus Paper

	Page 3			Mark Scheme Syllabus			r
	га	ye 3	,	GCE A LEVEL – October/November 2013			1
<u></u>				GOL A LLVLL - October/November 2013	3102	42	
	(b)	(i)	sketch: <u>curve</u> from (±1.5, 0) passing through (0, 25) reasonable shape (<i>curved with both intersections between</i>			M1	
				$y = 12.0 \rightarrow 13.0$		A1	[2]
		(ii)		nax. amplitude potential energy is total energy lenergy = 4.0 mJ		B1 B1	[2]
4	(a)	(i)	prop	e proportional to product of (two) charges an portional to square of separation rence to point charges	nd inversely	M1 A1	[2]
		(ii)		$2 \times (1.6 \times 10^{-19})^2 / \{4\pi \times 8.85 \times 10^{-12} \times (20 \times 10^{-6})^2\}$ $1.15 \times 10^{-18} \text{ N}$		C1 A1	[2]
	(b)	(i)		e per unit charge either a stationary charge		M1	
				positive charge		A1	[2]
		(ii)		electric field is a vector quantity electric fields are in opposite directions charges repel			
				Any two of the above, 1 each		B2	[2]
				graph: line always between given lines crosses <i>x</i> -axis between 11.0 μm and 12.3 μm reasonable shape for curve		M1 A1 A1	[3]
5	(a)	(i)	field	shown as right to left		B1	[1]
		(ii)	lines	s are more spaced out at ends		B1	[1]
	(b)	Hall voltage depends on angle either between field and plane of probe or maximum when field normal to plane of probe				M1	
				vhen field parallel to plane of probe		A1	[2]
	(c)	(i)	of ch	uced) e.m.f. proportional to rate nange of (magnetic) flux (linkage) we rate of cutting of flux)		M1 A1	[2]
		(ii)		move coil towards/away from solenoid rotate coil vary current in solenoid			
				insert iron core into solenoid three sensible suggestions, 1 each)		В3	[3]

www.dynamicpapers.com

	Page 4		Syllabus			
-	Page 4	Mark Scheme GCE A LEVEL – October/November 2013	Syllabus 9702	Pape 42	<u> </u>	
		GCE A LEVEL – October/November 2013	9702	42		
6	force is	e to magnetic field is constant (always) normal to direction of motion e provides the centripetal force		B1 A1	[2]	
	(b) $mv^2 / r =$			M1	[3]	
		/ m = v / Br		A0	[1]	
	(c) (i) q/1	$m = (2.0 \times 10^7) / (2.5 \times 10^{-3} \times 4.5 \times 10^{-2})$ = 1.8 × 10 ¹¹ C kg ⁻¹		C1 A1	[2]	
	pag	tch: curved path, constant radius, in direction towar e gent to curved path on entering and on leaving the field		M1 A1	[2]	
7	di <i>or</i> conce	light passes through suitable film / cork dust etc. ffraction occurs and similar pattern observed entric circles are evidence of diffraction		M1 A1 (M1) (A1)	[2]	
	diffrac	diffraction is a wave property				
	$\lambda = h/p$ s	ncreases so) momentum increases so λ decreases adii decrease		M1 M1 A1	[3]	
	(special	case: wavelength decreases so radii decreases – sco	res 1/3)	711	[0]	
	<i>or</i> (speed i	ncreases so) energy increases		(B1)		
	$\lambda = h / $	$(2Em)$ so λ decreases		(M1)		
	hence ra	hence radii decrease				
		electron and proton have same (kinetic) energy				
	ratio = p	$p = p^2 / 2m \text{ or } p = \sqrt{(2Em)}$ $p_e / p_p = \sqrt{(m_e / m_p)}$		C1 C1		
		$= \sqrt{\{(9.1 \times 10^{-31}) / (1.67 \times 10^{-27})\}}$ = 2.3 \times 10^{-2}		۸1	[4]	
	= 2	.3 × 10		A1	[4]	
8		o separate nucleons (in a nucleus) e to infinity		M1 A1	[2]	
	(b) (i) fissi	on		B1	[1]	
	(ii) 1.	U: near right-hand end of line		B1	[1]	
	2.	Mo: to right of peak, less than 1/3 distance from peak	to U	B1	[1]	
	3.	La: $0.4 \rightarrow 0.6$ of distance from peak to U		B1	[1]	

www.dynamicpapers.com
Syllabus Paper

	Page 5			Mark Scheme	Syllabus	Paper	,
	raye J			GCE A LEVEL – October/November 2013	9702	<u>гареі</u> 42	
		(iii)	1.	right-hand side, mass = 235.922 u mass change = 0.210 u	0.02	C1 A1	[2]
			2.	energy = mc^2 = $0.210 \times 1.66 \times 10^{-27} \times (3.0 \times 10^8)^2$		C1	
				= 3.1374×10^{-11} J = 196 MeV (<u>need 3 s.f.</u>) (use of 1 u = 934 MeV, allow 3/3; use of 1 u = 930 MeV, allow 2/3) (use of 1.67×10^{-27} not 1.66×10^{-27} scores max. 2/3)	MeV or 932	C1 A1	[3]
				Section B			
9	(a)	•		s on / takes signal from sensing device it gives an voltage output		B1 B1	[2]
	(b)	V_{OU}	_{rt} sho	or and resistor in series between +4 V line and earth own clearly across either thermistor or resistor own clearly across thermistor		M1 A1 A1	[3]
	(c)		swit isola swit	ote switching ching large current by means of a small current ating circuit from high voltage ching high voltage by means of a small voltage/current a sensible suggestions, 1 each to max. 2)		B2	[2]
10	(a)			f ultrasound)	(1)	B1	
		refle	ected	d by quartz / piezo-electric crystal I from boundaries (between media) I pulse detected	(1)	B1 B1	
		sigr	nal pr	Itrasound transmitter rocessed and displayed	(1)	B1	
		time	e dela	of reflected pulse gives information about the boundar ay gives information about depth marks plus any two from the four, max. 6)	y (1) (1)	B2	[6]
	(b)			wavelength structures resolved / detected (<i>not more sharpness</i>)		B1 B1	[2]
	(c)	(i)		$I_0 e^{-\mu x}$ $0 = \exp(-23 \times 6.4 \times 10^{-2})$ = 0.23		C1 C1 A1	[3]
		(ii)		r signal has passed through greater thickness of mediu has greater attenuation / greater absorption / smaller int		M1 A1	[2]

www.dynamicpapers.com
Syllabus Paper

Page 6				Mark Scheme	Paper		
	i age o			GCE A LEVEL – October/November 2013	Syllabus 9702	42	-
11	(a)	left-	hand	bit underlined	V. V.2	B1	[1]
	(b)			10, 1111, 1010, 1001 et scores 2, 4 correct scores 1)		A2	[2]
	(c)			nt changes in detail of V between samplings ency too low		M1 A1	[2]
12	(a)		gain	rithm provides a smaller number of amplifiers is series found by addition, (not multiplica sible suggestion)	ition)	В1	[1]
	(b)	(i)	optic	cfibre		B1	[1]
		(ii)		nuation/dB = $10 \lg(P_2/P_1)$ = $10 \lg(\{6.5 \times 10^{-3}\}/\{1.5 \times 10^{-15}\})$ = 126		C1 C1	
			leng	th = 126 / 1.8 = 70 km		A1	[3]