CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

		www.dynamicpapers.com					
Page 2		Mark Scheme Syllabus		Paper			
		GCE AS/A LEVEL – October/November 2013	9702	21			
1	amp	rin / K bere / amp / A bw mole / mol and candela / Cd]		B1 B1	[2]		
		(i) energy OR work = force × distance [allow any energy expression] units: kg m s ⁻² × m OR kg (m s ⁻¹) ² for $\frac{1}{2}$ mv ² or mc ² (ignore any numerical factor)		C1 M1			
		$= \text{kg m}^2 \text{ s}^{-2}$		A0	[2]		
	(ii) unit C: ∣ = kg	s: <i>p</i> : kg m ⁻³ g: m s ⁻² A: m ² l ₀ : m kg m ² s ⁻² / kg ² m ⁻⁶ m ² s ⁻⁴ m ² m ³ [any subject] y ⁻¹ m s ² (allow m s ² / kg)		C1 C1 A1	[3]		
2	$d = 3 \times 2$	4 (allow $t = 0.2 \times 2$) $10^8 \times 0.8 \times 10^{-6}$ OR $3 \times 10^8 \times 0.4 \times 10^{-6}$ m hence distance from source to reflector = 120 m		C1 C1 C1 A1	[4]		
		f sound 300 cf speed of light 3×10^8 OR time = 240 OR time = 120) / 300 (= 0.4)	C1			
	sound s	lower by factor of 10 ⁶ OR time for one division 0.8 / OR time for one division 0.4 / 2		C1			
	time bas	se setting 0.2 s cm ^{-1} [unit required]	_	A1	[3]		
3		force \times distance <u>moved</u> / displacement in the direction n a force moves in the direction of the force work is don		B1	[1]		
	(b) kinetic e	energy = $\frac{1}{2} mv^2$ = $\frac{1}{2} 0.4 (2.5)^2 = 1.25 / 1.3 J$		C1 A1	[2]		
		a under graph is work done / work done = $\frac{1}{2}$ Fx 1.25 = (14 x) / 2 0.18 (0.179) m [allow x = 0.19 m using kinetic energy	gy = 1.3 J]	C1 C1 A1	[3]		
	(ii) sma	both curve from $v = 2.5$ at $x = 0$ to $v = 0$ at Q	4	M1			
	curv	ve with increasing gradient		A1	[2]		

	Dec: 0		www.dynamicpapers.com				
Page 3		6	Mark SchemeSyllabusGCE AS/A LEVEL – October/November 20139702		Paper 21	Paper	
4	• •	•	f a couple = <u>one</u> of the forces / a force × distance d by the <u>perpendicular distance between the forces</u>	5702	M1 A1	[2]	
	(b) (i)	norn	ght at P (vertically) down nal reaction OR contact force at (point of contact tically) up	with the pin)	B1 P B1	[2]	
	(ii)	torq	ue = 35 × 0.25 (or 25) × 2 = 18 (17.5) N m		C1 A1	[2]	
	(iii)		two 35N forces are equal and opposite and the weight tact / reaction force are equal and opposite	and the upwar	d / B1	[1]	
	(iv)	not i	in equilibrium as the (resultant) torque is not zero		B1	[1]	
5	(a) (i)		lacement is the distance the rope / particles are (above equilibrium / mean / rest / undisturbed position (not 'dista		om B1	[1]	
	(ii)	1.	amplitude (= 80 / 4) = 20 mm		B1	[1]	
			$v = f\lambda \text{ or } v = \lambda / T$ f = 1 / T = 1 / 0.2 (5 Hz) $v = 5 \times 1.5 = 7.5 \text{ m s}^{-1}$		C1 C1 A1	[3]	
			of rope shown at equilibrium position avelength, shape, peaks / wave moved $1\!$		B1 B1	[2]	
	(c) (i)		gressive as energy OR peaks OR troughs is/are to pagated (by the waves)	ansferred/mov	ed B1	[1]	
	(ii)		sverse as particles/rope movement is perpendicular to pagation of the energy/wave velocity	direction of trav	vel B1	[1]	
6			ork (done) / charge OR energy transferred from (electric harge	al to other form	ns) B1	[1]	
	(b) (i)	ρ = $\frac{1}{2}$	ho l / A 18 × 10 ⁻⁹ (18 × 10 ⁻⁹ × 75) / 2.5 × 10 ⁻⁶ = 0.54 Ω		C1 C1 A1	[3]	
	(ii)		<i>IR</i> 38 + (2 × 0.54) 240 / 39.08 = 6.1 (6.14) A		C1 C1 A1	[3]	

		www.dynamicpapers.com			
	Page 4	Mark Scheme Syllabus		Paper	
		GCE AS/A LEVEL – October/November 2013	9702	21	
	=	$I^{2}R$ or $P = VI$ and $V = IR$ or $P = V^{2}/R$ and $V = IR$ (6.14) ² × 2 × 0.54 41 (40.7) W		C1 C1 A1	[3]
	(c) area of wire is less (1/5) hence resistance greater (×5) OR R is \propto 1/A therefore R is greater		M1		
	p.d. acro	p.d. across wires greater so power loss in cables increases		A1	[2]
7	eleo (ii) redi	electric field strength OR $E = V / d$ with symbols explained		B1 B1 B1	[1]
	IIICI			Ы	[4]
	• •	α opposite charge to β (as deflection in opposite direction) β has a range of velocities OR energies (as different deflections)	deflections) an	B1 d	
	, α a l	Il have same velocity OR energy (as constant deflection) re more massive (as deflection is less for greater field str	,	B1 B1	[3]
	(b) W = 234 Y = 4 ar	4 and X = 90 nd Z = 2		B1 B1	[2]
	(c) A = 32 a	and $B = 16$ and $C = 0$ and $D = -1$		B1	[1]