CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

www.dynamicpapers.com

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9702	43

Section A

1	(a)	(i)	number of molecules	B1	[1]
		(ii)	mean square speed	B1	[1]
	(b)	(i)	1. $pV = nRT$ $n = (6.1 \times 10^5 \times 2.1 \times 10^4 \times 10^{-6}) / (8.31 \times 285)$ n = 5.4 mol	C1 C1 A1	[3]
			2. either $N = nN_A$ = 5.4 × 6.02 × 10 ²³ = 3.26 × 10 ²⁴ or	C1 A1	
			pV = NkT $N = (6.1 \times 10^5 \times 2.1 \times 10^4 \times 10^{-6}) / (1.38 \times 10^{-23} \times 285)$ $N = 3.26 \times 10^{24}$	(C1) (A1)	[2]
		(ii)	either $6.1 \times 10^5 \times 2.1 \times 10^{-2} = \frac{1}{3} \times 3.25 \times 10^{24} \times 4 \times 1.66 \times 10^{-27} \times < c^2 > < c^2 > = 1.78 \times 10^6$ $c_{\text{RMS}} = 1.33 \times 10^3 \text{m s}^{-1}$	C1 C1 A1	
			or $^{1}/_{2} \times 4 \times 1.66 \times 10^{-27} \times \langle c^{2} \rangle = ^{3}/_{2} \times 1.38 \times 10^{-23} \times 285$ $\langle c^{2} \rangle = 1.78 \times 10^{6}$ $c_{RMS} = 1.33 \times 10^{3} \text{ m s}^{-1}$	(C1) (C1) (A1)	[3]
2	(a)	(i)	1. 0.1s, 0.3s, 0.5s, etc (any two)	A1	[1]
			2. either 0, 0.4 s, 0.8 s, 1.2 s or 0.2 s, 0.6 s, 1.0 s (any two)	A1	[1]
		(ii)	period = 0.4 s frequency = (1/0.4 =) 2.5 Hz	C1 A1	[2]
	((iii)	phase difference = 90 ° or $\frac{1}{2}$ π rad	B1	[1]
	(b)	frec	quency = 2.4 – 2.5 Hz	В1	[1]
	(c)	incr e.g	attach sheet of card to trolley reases damping / frictional force reduce oscillator amplitude uces power/energy input to system	M1 A1 (M1) (A1)	[2]

www.dynamicpapers.com

Page 3			Mark Scheme	Syllabus	Paper		
	. 4900			GCE AS/A LEVEL – October/November 2012	9702	43	
3	(a)	(i)	(tan	gent to line gives) direction of force on a (small test) m	ass	B1	[1]
		(ii)		gent to line gives) direction of force on a (small test) charge is positive	arge	M1 A1	[2]
	(b)	e.g. line grea field	s nor ater s I stre	r: al fields rmal to surface separation of lines with increased distance from sphere ngth $\propto 1$ (distance to centre of sphere) ² ny sensible answer)	,	B1	
		e.g. elec awa e.g. elec	etric for ay fro gravetric fi	te: vitational force (always) towards sphere orce direction depends on sign of charge on sphere / to m sphere vitational field/force is attractive ield/force is attractive or repulsive my sensible comparison)	owards or	B1 B1 (B1) (B1)	[3]
	(c)	eled	ctric f	onal force = $1.67 \times 10^{-27} \times 9.81$ = $1.6 \times 10^{-26} \text{N}$ force = $1.6 \times 10^{-19} \times 270 / (1.8 \times 10^{-2})$ = $2.4 \times 10^{-15} \text{N}$ force very much greater than gravitational force		A1 C1 A1 B1	[4]
4	(a)			proton is normal to velocity and field centripetal force (for circular motion)		M1 A1	[2]
	(b)	cen v =	tripet $r\omega$	c force = Bqv cal force = $mr\omega^2$ or mv^2/r $qr\omega = mr\omega^2$		B1 B1 B1	
		•	Bq/n	•		A1	[4]
5	(a)	whe	ere A	= $BA \sin \theta$ is the area (through which flux passes) angle between B and (plane of) A		M1 A1	
		$\phi =$		is area normal to B		(M1) (A1)	[2]
	(b)			$t_{ m H}$ constant and non zero between the poles and zero ocrease/decrease at ends of magnet	outside	M1 A1	[2]

www.dynamicpapers.com
Syllabus Paper

	Page 4			Syllabus		
	ra	ge 4	GCE AS/A LEVEL – October/November 2012	9702	Paper 43	
			GCE AG/A ELVEL - October/November 2012	3102		
	(c)	(i)	(induced) e.m.f. proportional to		M1	
			rate of change of (magnetic) flux (linkage)		A1	[2]
		(ii)	short pulse on entering and on leaving region between p	ooles	M1	
		` ,	pulses approximately the same shape but opposite pola		A1	
			e.m.f. zero between poles and outside		A1	[3]
6	(a)	(i)	connection to 'top' of resistor labelled as positive		B1	[1]
		/::\	diada Daud diada D		D4	[4]
		(ii)	diode B and diode D		B1	[1]
	(b)	(i)			C1	
			mean power = $V_P^2/2R$ = $4^2/(2 \times 2700)$		C1	
			$= 2.96 \times 10^{-3} \text{W}$		A1	[3]
		(ii)	capacitor, correct symbol, connected in parallel with R		B1	[1]
	(c)	_	ph: half-wave rectification		M1	
		san	ne period and same peak value		A1	[2]
7	(a)		elength associated with a particle		M1	
		tha	is moving		A1	[2]
	(b)	(i)	kinetic energy = $1.6 \times 10^{-19} \times 4700$		C1	
			$= 7.52 \times 10^{-16} \text{ J}$		04	
			either energy = $p^2/2m$ or $E_K = \frac{1}{2}mv^2$ and $p = mv$ $p = \sqrt{(7.52 \times 10^{-16} \times 2 \times 9.1 \times 10^{-31})}$		C1 C1	
			$= 3.7 \times 10^{-23} \text{Ns}$.	
			$\lambda = h/p$		C1	
			= $(6.63 \times 10^{-34}) / (3.7 \times 10^{-23})$ = 1.8×10^{-11} m		A1	[5]
			- 1.0 × 10 III		Ai	ادا
		(ii)	wavelength is about separation of atoms		B1	
			can be used in (electron) diffraction		B1	[2]
8	(a)	(i)	<i>x</i> = 2		A1	[1]
		(ii)	either beta particle or electron		B1	[1]
		(")	outer bota particle of electron		וט	ניו
	<i>,</i>			2011	. .	
	(b)	(i)	mass of separate nucleons = $\{(92 \times 1.007) + (143 \times 1.00) = 236.931 \text{ u}\}$	ນ9)} u	C1 C1	
			- 236.931 u binding energy = 236.931 u – 235.123 u		Ci	
			= 1.808 u		A1	[3]

www.dynamicpapers.com
Syllabus Paper

Do		~ · ·	Maula Calagora	.aynamicpape			
	ra	ge 5	Mark Scheme GCE AS/A LEVEL – October/N	ovember 2012	Syllabus 9702	Paper 43	-
<u></u>			GOE AS/A LEVEL - OCIODER/N	OVEITIBEL ZUIZ	3102	43	
		(ii)	E = <i>mc</i> ² energy = 1.808 × 1.66 × 10 ⁻²⁷ × (3.0 × 1	0 ⁸) ²		C1	
			$= 2.7 \times 10^{-10} \text{ J}$,	40	C1	
			pinding energy per nucleon = (2.7×10^{-1})	¹⁰) / (235 × 1.6 × 1	0^{-13})	M1	
			= 7.18 MeV			A0	[3]
((c)	ene	gy released = (95 × 8.09) + (139 × 7.92 = 1869.43 – 1687.3	?) – (235 × 7.18)		C1	
		(alle	= 1809.43 = 1007.3 = 182 MeV v calculation using mass difference bet	ween products and	d reactants)	A1	[2]
		(an	v calculation using mass unicremee bet	ween products and	reactarits		
			Sectio	n B			
9 ((a)	ligh	emitting diode (<i>allow LED</i>)			B1	[1]
((b)	give	s a high or a low output / +5 V or –5 V ou	ıtput		M1	
	. ,	dep	ndent on which of the inputs is at a high	ner potential		A1	[2]
((c)	(i)	provides a reference/constant potential			B1	[1]
		(ii)	determines temperature of 'switch-over'			B1	[1]
((d)	(i)	relay			A1	[1]
		/:: \		Annual Indiana de la Contra de l		D4	
		(ii)	relay connected correctly for op-amp oud diode with correct polarity in output from		age circuit	B1 B1	[2]
10 ((a)	bac	ground reading = 19			B1	[1]
((b)	A =	2			A1	
`	(-)	B =	5			A1	
		C =				A1	- 47
		D = (<i>All</i>	_N 1 mark if only subtracts background r	eading)		A1	[4]
((c)	(i)	either 5, 14 or 14, 5 (A+D, B+C or <i>v.v.</i>)			B1	[1]
`			,	(D : D)			
		(ii)	Three numbers and 'inside' number is 8 Three numbers and 'outside' numbers a		2 (A,C or <i>v.v.</i>)	B1 B1	[2]
11 ((a)	higl	frequency wave			B1	
`	. ,	the	mplitude or the frequency is varied			M1	
			ariation represents the information sign			۸ ۸	[0]
		III S	nchrony with (the displacement of) the i	mormation signal.		A1	[3]

www.dynamicpapers.com

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9702	43

(b)	e.g. shorter aerial required longer transmission range / lower transmitter power / less attenuation allows more than one station in a region less distortion (allow any three sensible suggestions, 1 mark each)			[3]
(a)	(i)	e.g. linking a (land) telephone to the (local) exchange	B1	[1]
	(ii)	e.g. connecting an aerial to a television	B1	[1]
((iii)	e.g. linking a ground station to a satellite	B1	[1]
(b)	(i)	attenuation = $10 \lg (P_2 / P_1)$ total attenuation = $2.1 \times 40 = 84 dB$ $84 = 10 \lg (\{450 \times 10^{-3}\} / P)$ $P = 1.8 \times 10^{-9} W$ (answer 1.1 ×10 ⁸ W scores 1 mark only)	C1 C1 A1	[3]
	(ii)	maximum attenuation = $10 \lg (\{450 \times 10^{-3}\} / \{7.2 \times 10^{-11}\})$ = $98 dB$ maximum length = $98/2.1$ = $47 km$	C1 A1	[2]
	a) (b)	long allo less (<i>allo</i> a) (i) (iii)	allows more than one station in a region less distortion (allow any three sensible suggestions, 1 mark each) (i) e.g. linking a (land) telephone to the (local) exchange (ii) e.g. connecting an aerial to a television (iii) e.g. linking a ground station to a satellite (i) attenuation = $10 \log (P_2/P_1)$ total attenuation = $2.1 \times 40 = 84 dB$) $84 = 10 \log (450 \times 10^{-3})/P$) $P = 1.8 \times 10^{-9} W$ (answer $1.1 \times 10^8 W$ scores 1 mark only) (ii) maximum attenuation = $10 \log (450 \times 10^{-3})/(7.2 \times 10^{-11})$) = $98 dB$ maximum length = $98/2.1$	longer transmission range / lower transmitter power / less attenuation allows more than one station in a region less distortion (allow any three sensible suggestions, 1 mark each) a) (i) e.g. linking a (land) telephone to the (local) exchange B1 (ii) e.g. connecting an aerial to a television B1 (iii) e.g. linking a ground station to a satellite B1 b) (i) attenuation = $10 \lg (P_2 / P_1)$ C1 total attenuation = $2.1 \times 40 (= 84 dB)$ C1 $84 = 10 \lg (\{450 \times 10^{-3}\} / P)$ A1 $(answer 1.1 \times 10^8 W scores 1 mark only)$ (ii) maximum attenuation = $10 \lg (\{450 \times 10^{-3}\} / \{7.2 \times 10^{-11}\})$ = $98 dB$ C1 maximum length = $98/2.1$