CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

www.dynamicpapers.com

Page 2	Mark Scheme		Paper
	GCE AS/A LEVEL – October/November 2012	9702	42

Section A

1	in	rce is proportional to the product of the masses and versely proportional to the square of the separation ther point masses or separation >> size of masses	M1 A1	[2]
	(b) (i)	gravitational force provides the centripetal force $mv^2/r = GMm/r^2$ and $E_K = \frac{1}{2}mv^2$ hence $E_K = GMm/2r$	B1 M1 A0	[2]
	(ii)	1. $\Delta E_{K} = \frac{1}{2} \times 4.00 \times 10^{14} \times 620 \times (\{7.30 \times 10^{6}\}^{-1} - \{7.34 \times 10^{6}\}^{-1})$ = 9.26 × 10 ⁷ J (ignore any sign in answer) (allow 1.0 × 10 ⁸ J if evidence that E_{K} evaluated separately for each r)	C1 A1	[2]
		2. $\Delta E_P = 4.00 \times 10^{14} \times 620 \times (\{7.30 \times 10^6\}^{-1} - \{7.34 \times 10^6\}^{-1})$ = 1.85 × 10 ⁸ J (ignore any sign in answer) (allow 1.8 or 1.9 × 10 ⁸ J)	C1 A1	[2]
	(iii)	either $(7.30 \times 10^6)^{-1}$ – $(7.34 \times 10^6)^{-1}$ or ΔE_K is positive/ E_K increased speed has increased	M1 A1	[2]
2	(a) (i)	sum of potential energy and kinetic energy of atoms/molecules/particles reference to random	M1 A1	[2]
	(ii)	no intermolecular forces no potential energy internal energy is kinetic energy (of random motion) of molecules (reference to random motion here then allow back credit to (i) if M1 scored)	B1 B1 B1	[3]
	` ei	netic energy ∞ thermodynamic temperature ther temperature in Celsius, not kelvin so incorrect temperature in kelvin is not doubled	B1 B1	[2]
3		mperature of the spheres is the same o (net) transfer of energy between the spheres	B1 B1	[2]
	(b) (i)	power = $m \times c \times \Delta\theta$ where m is mass per second $3800 = m \times 4.2 \times (42 - 18)$ $m = 38 \mathrm{g s}^{-1}$	C1 C1 A1	[3]
	(ii)	some thermal energy is lost <u>to the surroundings</u> so rate is an overestimate	M1 A1	[2]
4	sh ne	raight line through origin lows acceleration proportional to displacement egative gradient lows acceleration and displacement in opposite directions	M1 A1 M1 A1	[4]

www.dynamicpapers.com
Syllabus Paper

		J	GCE AS/A LEVEL – October/November 2012	9702	42	
	(b)	(i)	2.8 cm		A1	[1]
		(ii)	either gradient = ω^2 and $\omega = 2\pi f$ or $a = -\omega^2 x$ and $\omega = 2\pi f$ gradient = 13.5/(2.8 × 10 ⁻²) = 482		C1	
			$\omega = 22 \mathrm{rad} \mathrm{s}^{-1}$		C1	
			frequency = $(22/2\pi =) 3.5 \text{Hz}$		A1	[3]
	(c)	e.g.	lower spring may not be extended upper spring may exceed limit of proportionality/elastic limit sensible suggestion)		B1	[1]
5	(a)	(i)	ratio of charge and potential (difference)/voltage (ratio must be clear)		B1	[1]
		(ii)	capacitor has equal magnitudes of (+)ve and (-)ve charge total charge on capacitor is zero (so does not store charge) (+)ve and (-)ve charges to be separated work done to achieve this so stores energy		B1 B1 M1 A1	[4]
	(b)	(i)	capacitance of Y and Z together is 24 μF		C1	
			1/C = 1/24 + 1/12 C = 8.0 μ F (allow 1 s.f.)		A1	[2]
		(ii)	some discussion as to why all charge of one sign on one pla Q = (CV =) $8.0 \times 10^{-6} \times 9.0$ = $72\mu\text{C}$	te of X	B1 M1 A0	[2]
	((iii)	1. $V = (72 \times 10^{-6})/(12 \times 10^{-6})$ = 6.0 V (allow 1 s.f.) (allow 72/12)		A1	[1]
			2. either Q = $12 \times 10^{-6} \times 3.0$ or charge is shared between charge = $36 \mu\text{C}$ Must have correct voltage in (iii)1 if just quote of $36 \mu\text{C}$ in		C1 A1	[2]
6	(a)	(i)	particle must be moving with component of velocity normal to magnetic field		M1 A1	[2]
		(ii)	$F = Bqv \sin \theta$ $q, v \text{ and } \theta \text{ explained}$		M1 A1	[2]
	(b)	(i)	face BCGF shaded		A1	[1]
		(ii)	between face BCGF and face ADHE		A1	[1]
1	(c)	•	ential difference gives rise to an <u>electric</u> field er $F_E = qE$ (no need to explain symbols)		M1	
			lectric field gives rise to force (on an electron)		A1	[2]

Mark Scheme

Page 3

www.dynamicpapers.com Syllabus

9702

Paper

42

C1 M1 Α1

7	(a)		uced e.m.f./current produces effectoppose the change causing it	ts/acts in such a direction/	tends	M1 A1	[2]
	(b)	(i)	1. to reduce flux losses/incredemagnetised	ease flux linkage/easily r	magnetised <u>and</u>	B1	[1]
			2. to reduce energy/heat losses caused by eddy currents (allow 1 mark for 'reduce eddy cu		ergy losses')	M1 A1	[2]
		(ii)	alternating current/voltage gives rise to (changing) flux in co flux links the <u>secondary coil</u> (by Faraday's law) changing flux		y coil)	B1 B1 M1 A1	[4]
8	(a)		crete quantity/packet/quantum of ergy of photon = Planck constant ×	•	adiation	B1 B1	[2]
	(b)	rate ma ma	eshold frequency of emission is proportional to intext. in kinetic energy of electron dependents. in kinetic energy independent of intext. in three, 1 each, max 3)	ndent on frequency	(1) (1) (1) (1)	В3	[3]
	(c)		$er E = hc/\lambda$ 450 nm to give	or $hc/\lambda = eV$ work function of 3.5 eV		C1	
		ene	ergy = 4.4×10^{-19} or 2.8 eV eV < 3.5 eV so no emission	to give $\lambda = 355 \text{nm}$ 355 nm < 450 nm so no		M1 A1	[3]

Mark Scheme

GCE AS/A LEVEL - October/November 2012

Page 4

or work function = 3.5 eV

threshold frequency = 8.45×10¹⁴ Hz 450 nm = 6.67×10¹⁴ Hz 6.67 × 10¹⁴ Hz < 8.45 × 10¹⁴ Hz

www.dynamicpapers.com

Page 5	Page 5 Mark Scheme		Paper
	GCE AS/A LEVEL – October/November 2012	9702	42

Section B

9	(a)	infir infir infir infir	zero output impedance/resistance nite input impedance/resistance nite (open loop) gain nite bandwidth nite slew rate ach, max. 3	В3	[3]
	(b)	(i) (ii)	graph: square wave correct cross-over points where $V_2 = V_1$ amplitude 5 V correct polarity (positive at $t = 0$) correct symbol for LED diodes connected correctly between V_{OUT} and earth correct polarity consistent with graph in (i) (R points 'down' if (i) correct)	M1 A1 A1 A1 M1 A1	[4] [3]
10	of o all in ima ima ima that	me s mag ges ges ge fo ge fo	nages taken from different angles / X-rays directed from different angles section/slice (1) es in the same plane (1) combined to give image of section/slice of successive sections/slices combined ormed using a computer ormed is 3D image (1) is be rotated/viewed from different angles (1) marks plus any two additional marks)	B1 B1 B1 B1	[6]
11		exti mul digi data any	noise can be eliminated/filtered/signal can be regenerated ra bits can be added to check for errors litiplexing possible tal circuits are more reliable/cheaper a can be encrypted for security sensible advantages, 1 each, max. 3	B3	[3]
	(b)	(i)	1. higher frequencies can be reproduced	B1	[1]
			2. smaller changes in loudness/amplitude can be detected	B1	[1]
		(ii)	bit rate = $44.1 \times 10^3 \times 16$ = $7.06 \times 10^5 \text{ s}^{-1}$	C1	
			number = $7.06 \times 10^6 \times 340$ = 2.4×10^8	A1	[2]
12	(a)	(i)	signal in one wire (pair) is picked up by a neighbouring wire (pair)	B1	[1]
		(ii)	outer of coaxial cable is earthed outer shields the core from noise/external signals	B1 B1	[2]

www.dynamicpapers.com

Page 6	Mark Scheme		Paper
	GCE AS/A LEVEL – October/November 2012	9702	42

(b) attenuation per unit length = $1/L \times 10 \lg(P_2/P_1)$ signal power at receiver = $10^{2.5} \times 3.8 \times 10^{-8}$	C1	
signal power at receiver $= 10^{-2} \times 3.0^{-10}$ = 1.2×10^{-5} W	C1	
112 10 11	C1	
attenuation in wire pair = $10 \log((3.0 \times 10^{-3})/(1.2 \times 10^{-5}))$		
= 24 dB	C1	
attenuation per unit length = 24/1.4		
$= 17 \text{ dB km}^{-1}$	A1	[4]
(other correct methods of calculation are possible)		