CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			ynamicpape Syllabus		
	Page 2	Mark Scheme	Paper		
		GCE AS/A LEVEL – October/November 2012	9702	41	
		Section A			
1	inver	e is proportional to the product of the masses and rsely proportional to the square of the separation er point masses <i>or</i> separation >> size of masses		M1 A1	[2]
		gravitational force provides the centripetal force $mv^2/r = GMm/r^2$ and $E_K = \frac{1}{2}mv^2$ hence $E_K = GMm/2r$		B1 M1 A0	[2]
	(ii)	1. $\Delta E_{\rm K} = \frac{1}{2} \times 4.00 \times 10^{14} \times 620 \times (\{7.30 \times 10^{6}\}^{-1} - \{7.34 \times 9.26 \times 10^{7} {\rm J}\ (ignore\ any\ sign\ in\ answer)$ (allow $1.0 \times 10^{8} {\rm J}\ if\ evidence\ that\ E_{\rm K}\ evaluated\ separate}$		C1 A1	[2]
	:	2. $\Delta E_{P} = 4.00 \times 10^{14} \times 620 \times (\{7.30 \times 10^{6}\}^{-1} - \{7.34 \times 10^{6}\}^{-1} = 1.85 \times 10^{8} \text{ J} (ignore any sign in answer)}$ (allow 1.8 or 1.9 × 10 ⁸ J)	-1)	C1 A1	[2]
		either (7.30 × 10 ⁶) ⁻¹ – (7.34 × 10 ⁶) ⁻¹ or $\Delta E_{\rm K}$ is positive / E _K ind speed has increased	creased	M1 A1	[2]
2		sum of potential energy and kinetic energy of atoms/molecu reference to random	ules/particles	M1 A1	[2]
	i	no intermolecular forces no potential energy internal energy is kinetic energy (of random motion) of mole (<i>reference to random motion here then allow back credit to</i> (B1 B1 B1	[3]
	• •	tic energy ∞ thermodynamic temperature for temperature in Celsius, not kelvin so incorrect		B1	
	<i>or</i> te	mperature in kelvin is not doubled		B1	[2]
3		perature of the spheres is the same net) transfer of energy between the spheres		B1 B1	[2]
		power = $m \times c \times \Delta \theta$ where <i>m</i> is mass per second 3800 = $m \times 4.2 \times (42 - 18)$ $m = 38 \text{ g s}^{-1}$		C1 C1 A1	[3]
	• •	some thermal energy is lost <u>to the surroundings</u> so rate is an overestimate		M1 A1	[2]
4	show	ght line through origin vs acceleration proportional to displacement ative gradient vs acceleration and displacement in opposite directions		M1 A1 M1 A1	[4]

	_			www.dynamicpaper					
	Paç	ge 3		Mark Scheme Syllabus GCE AS/A LEVEL – October/November 2012 9702					
				GCE AS/A LEVEL - October/November 2012	9702	41			
	(b)	(i)	2.80	cm		A1	[1]		
		(ii)	grad	er gradient = ω^2 and $\omega = 2\pi f$ or $a = -\omega^2 x$ and $\omega = 2\pi f$ lient = 13.5/(2.8 × 10 ⁻²) = 482		C1			
				22 rad s^{-1}		C1	101		
			Treq	uency = $(22/2\pi =) 3.5 \text{Hz}$		A1	[3]		
	• •	-		er spring may not be extended					
				<u>er</u> spring may exceed limit of proportionality/elastic limit sible suggestion)		B1	[1]		
		(un	<i>y</i> een				ſ.]		
5	(a)	(i)		of charge and potential (difference)/voltage					
			(rati	o must be clear)		B1	[1]		
		(ii)		acitor has equal magnitudes of (+)ve and (-)ve charge		B1			
				charge on capacitor is zero (so does not store charge) e and (-)ve charges to be separated		B1 M1			
				<pre>< done to achieve this so stores energy</pre>		A1	[4]		
	(b)	(i)		acitance of Y and Z together is 24 μ F		C1			
				r = 1/24 + 1/12 8.0 μF (<i>allow</i> 1 s.f.)		A1	[2]		
							[-]		
		(ii)		e discussion as to why all charge of one sign on one plat ($CV = 1 \frac{8.0 \times 10^{-6}}{2} \times 9.0$	te of X	B1 M1			
			= 72			A0	[2]		
	(1	$V = (72 \times 10^{-6}) / (12 \times 10^{-6})$					
	(,		= 6.0 V (allow 1 s.f.) (allow 72/12)		A1	[1]		
			2.	either Q = 12 × 10 ⁻⁶ × 3.0 or charge is shared between Y	(and Z	C1			
				charge = 36 μC		A1	[2]		
				Must have correct voltage in (iii) 1 if just quote of 36μ C ir	n (iii) 2.				
6	(a)	(i)	parti	icle must be moving		M1			
			with	component of velocity normal to magnetic field		A1	[2]		
	((ii)	F = .	$Bqv \sin \theta$		M1			
			q, v	and θ explained		A1	[2]		
	(b)	(i)	face	BCGF shaded		A1	[1]		
		(ii)	betv	veen face BCGF and face ADHE		A1	[1]		
	(c)	pote	ential	difference gives rise to an <u>electric</u> field		M1			
				= qE (no need to explain symbols)		A 4	101		
		UT E	Hectri	ic field gives rise to force (on an electron)		A1	[2]		

							WW	w.dynam	icpaper	s.com	
	Pa	ge 4	ŀ		Ма	ark So	cheme	Sylla	abus	Paper	
				GCE A	S/A LEVEL	. – Oc	tober/November 2012	97	02	41	
7	(a)				nt produces ge causing i		cts/acts in such a direct	ion/tends		M1 A1	[2]
	(b)	(i)		o reduce agnetised	flux losses	s/incre	ease flux linkage/eas	ily magne	tised <u>and</u>	B1	[1]
			caus	ed by eddy			(do not allow 'to preven urrents')	t energy lo	sses')	M1 A1	[2]
		(ii)	give: flux	s rise to (cł links the <u>se</u>	ent/voltage nanging) flux condary coi aw) changin	k in co <u>I</u>	ore induces e.m.f. (in seco	ndary coil)		B1 B1 M1 A1	[4]
8	(a)			• • •	acket/quant Planck cons		energy of electromagne frequency	etic radiatic	n	B1 B1	[2]
	(b)	threshold frequency(1)rate of emission is proportional to intensity(1)max. kinetic energy of electron dependent on frequency(1)max. kinetic energy independent of intensity(1)(any three, 1 each, max 3)(1)				В3	[3]				
	(c)	λ= ene	450 r ergy =		⁹ or 2.8 eV o emission		or $hc/\lambda = eV$ work function of 3.5 eV to give $\lambda = 355$ nm 355 nm < 450 nm so no			C1 M1 A1	[3]
		thre 450	esholo) nm =	• 6.67×10 ¹⁴	= 8.45×10 ¹	⁴ Hz				C1 M1 A1	

			ers.com					
	Pa	ge 5	5 Mark Scheme Syllabus				,	
				GCE AS/A LEVEL – October/November 2012	9702	41		
				Section B				
9	(a)	 (a) e.g. zero output impedance/resistance infinite input impedance/resistance infinite (open loop) gain infinite bandwidth infinite slew rate 1 each, max. 3 						
	(b)	(i) (ii)	corre amp corre	h: square wave ect cross-over points where $V_2 = V_1$ litude 5 V ect polarity (<i>positive at t = 0</i>) ect symbol for LED		M1 A1 A1 A1	[4]	
			corre	es connected correctly between V _{OUT} and earth ect polarity consistent with graph in (i) oints 'down' if (i) correct)		A1 A1	[3]	
10	of o	X-ray images taken from different angles/X-rays directed from different angles of one section/slice (1) all images in the same plane (1)						
	ima ima ima ima	ges ges ge fo ge fo	comb of suc ormec ormec	ined to give image of section/slice ccessive sections/slices combined d using a computer d is 3D image otated/viewed from different angles	(1) (1)	B1 B1 B1		
11		e.g exti	. nois ra bits	e can be eliminated/filtered/signal can be regenerated can be added to check for errors ing possible		B2	[6]	
		digi dat	ital cir a can	cuits are more reliable/cheaper be encrypted for security ible advantages, 1 each, max. 3		В3	[3]	
	(b)	(i)	1. hi	gher frequencies can be reproduced		B1	[1]	
			2. sr	naller changes in loudness/amplitude can be detected		B1	[1]	
		(ii)		ate = $44.1 \times 10^{3} \times 16$ = $7.06 \times 10^{5} \text{ s}^{-1}$ ber = $7.06 \times 10^{6} \times 340$ = 2.4×10^{8}		C1 A1	[2]	
						, (1	[-]	
12	(a)	(i)	sign	al in one wire (pair) is picked up by a neighbouring wire (pai	r)	B1	[1]	
		(ii)		r of coaxial cable is earthed r shields the core from noise/external signals		B1 B1	[2]	

	www.dyna			
Page 6	Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL – October/November 2012	9702	41	
(b) attenuati	on per unit length = $1/L \times 10 \log(P_2/P_1)$ wer at receiver = $10^{2.5} \times 3.8 \times 10^{-8}$		C1	
$= 1.2 \times 10^{-5} W$			C1	
attenuati	on in wire pair = 10 lg({3.0 × 10 ⁻³ }/{1.2 × 10 ⁻⁵ }) = 24 dB		C1	
attenuati	on per unit length = 24/1.4 = 17 dB km ⁻¹		A1	