CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

www.dynamicpapers.com

В1

В1

[3]

Page 2				llabus Pape	Paper			
				702 23				
1	(a)	spaci	ing = $380 \text{ or } 3.8 \times 10^2 \text{pm}$	B1				
	(b)		= 24 × 3600 = 0.086 (0.0864) Ms	B1	[1]			
	(c)	time =	$= distance / speed = \frac{1.5 \times 10^{11}}{3 \times 10^8}$	C1				
			= 500 (s) = 8.3 min	A1	[2]			
	(d)	mome	entum and weight	В1	[1]			
	(e)	(i) a	arrow to the right of plane direction (about 4° to 24°)	В1	[1]			
		or u	scale diagram drawn or use of cosine formula $v^2 = 250^2 + 36^2 - 2 \times 250 \times 36 \times \cos 45^\circ$ or resolving $v = [(36\cos 45^\circ)^2 + (250 - 36\sin 45^\circ)^2]^{1/2}$	C1				
		а	resultant velocity = 226 (220 – 240 for scale diagram) m s ⁻¹ allow one mark for values 210 to 219 or 241 to 250 m s ⁻¹ or use of formula ($v^2 = 51068$) $v = 230 (226)$ m s ⁻¹	A1	[2]			
2	(a)	` '	accelerations (A to B and B to C) are same magnitude accelerations (A to B and B to C) are opposite directions	В1				
		o (,	poth accelerations are toward B to B and B to C) the component of the weight down the slope provide acceleration	B1 provides B1				
			acceleration = $g \sin 15^{\circ}$ $s = 0 + \frac{1}{2} at^{2}$ $s = 0.26 / \sin 15^{\circ} = 1.0$	C1 C1				
		t	$t^2 = \frac{1.0 \times 2}{9.8 \times \sin 15^\circ} t = 0.89 \mathrm{s}$	A1	[3]			
		ν	$v = 0 + g \sin 15t$ or $v^2 = 0 + 2g \sin 15 \times 1.0$ $v = 2.26 \text{ m s}^{-1}$ (using loss of GPE = gain KE can score full marks)	C1 A1				
			of GPE at A = gain in GPE at C or loss of KE at B = gain in GPE $h_2 = 0.26 \text{m}$ or $\frac{1}{2} mv^2 = mgh$ $h_2 = 0.5 \times (2.26)^2 / 9.81 = 0.26 \text{m}$	at C B1				
		A1	[2]					
3	(a)		er is the rate of doing work or power = work done / time (taken) or er = energy transferred / time (taken)	B1	[1]			
	(b)		as the speed increases drag / air resistance increases	B1 R1				

(allow one mark for speed increases and acceleration decreases)

resultant force reduces hence acceleration is less

constant speed when resultant force is zero

www.dynamicpapers.com
Syllabus Paper

	Page 3	}		Mark Sch		Syllabus	Paper		
	. ago o		GCE AS/A I		ber/November 2012	9702	23		
	(ii)	P =	e from cyclist = d 12 × 48 576 W	rag force / resi	istive force		B1 M1 A0	[2]	
	(iii)	tangent drawn at speed = 8.0 r gradient values that show acce			tion between 0.44 to 0.4	8 m s ⁻²	M1 A1	[2]	
	(iv)	600	R = ma /8 - R = 80 R = 75 - 40 = 3		[using P = 576] 576 / 8 · R = 72 – 40 = 32 N	– R = 80 × 0.5	C1 C1 A1	[3]	
	(v)	R/v	2 m s ⁻¹ drag is 48 v calculated as 4 consistent respo	and 4 or 4.4	rag is 35 or 32N er <i>R</i> is proportional to <i>v</i> o	r not	B1	[1]	
4	p.d.	. = ele	chemical energy ectrical energy to per unit charge				M1 M1 A1	[3]	
	(b) E=	I (R	+ r) or $I = E/(R$	+ <i>r</i>) (any su	bject)		B1	[1]	
	(c) (i)	E = :	5.8 V				B1	[1]	
	(ii)	e.g.	lence of gradient $5.8 = 4 + 1.0 \times r$ 1.8Ω		calculation with values fro	om graph	C1 A1	[2]	
	(d) (i)	P = 1 P = 1	VI 2.9 × 1.6 = 4.6 (4	1.64)W			C1 A1	[2]	
	(ii)				28 or efficiency = <i>VI / EI</i>) % or (2.9 / 5.8) × 100 =	50%	C1 A1	[2]	
5	(a) trav	el thr	rough a vacuum	/ free space			В1	[1]	
	(b) (i)	C : r	name: name: name:	microwaves ultra-violet / X –rays	wavelength: 10 ⁻⁴ to UV wavelength: 10 ⁻⁷ to wavelength: 10 ⁻⁹ to	10 ⁻⁹ m	B1 B1 B1	[3]	
	(ii)	f =	$\frac{3\times 10^8}{500\times 10^{-9}}$				C1		
		f = 6	6(.0) × 10 ¹⁴ Hz				A1	[2]	

www.dynamicpapers.com
Syllabus Paper

	3			GCE AS/A LEVEL – October/November 2012	9702	23	
	(c)	vibrations are in one direction perpendicular to direction of propagation / energy transfer or good sketch showing this				M1	
						A1	[2]
6	(a)	(i)	elec	tron		B1	[1]
		(ii)	(ii) any two: can be deflected by electric and magnetic fields or negatively charged / absorbed by few (1 – 4) mm of aluminum / 0.5 to 2 m or metres for range in a speed up to 0.99c / range of speeds / energies			ı air /	
			эрсс	ou up to 0.556 / range of specus / energies		B2	[2]
			(iii) decay occurs and cannot be affected by external / environmental factors or two stated factors such as chemical / pressure / temperature / humidity			B1	[1]
	(b)			or superscript numbers for subscript numbers		B1 B1	[2]
	(c)	ene	ergy =	$5.7 \times 10^3 \times 1.6 \times 10^{-19} \ (= 9.12 \times 10^{-16} \ \text{J})$		C1	
		v ² =	= 2 × 9.	9.12×10^{-16} 11×10^{-31}		C1	
		v =	4.5 >	$\times 10^7 \mathrm{ms^{-1}}$		A1	[3]
	(d)	1 no	eutroi ecial (e 1 proton and 1 electron n in hydrogen-2 and 2 neutrons in hydrogen-3 case: for one mark 'same number of protons / atomic nu number of neutrons')	mber	B1 B1	[2]

Mark Scheme

Page 4