CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			www.dynamicpapers.com					
	Page 2		Mark Scheme Syllabus		Paper			
	•		GCE AS/A LEVEL – October/November 2012	9702	21			
1	 (a) (i) acceleration = change in velocity / time (take or acceleration = rate of change of velocity (ii) a bady continues at constant velocity 		cceleration = rate of change of velocity	esultant force	B1 B1	[1] [1]		
	(ii)	a 00	ody continues at constant velocity unless acted on by a resultant force		Ы	ניז		
	(b) (i)		ance is represented by the area under graph ance = $\frac{1}{2} \times 29.5 \times 3 = 44.3 \text{m}$ (accept 43.5 m for 29 to 44	5 m for 30)	C1 A1	[2]		
	(ii)	fricti	ant force = weight – frictional force nal force increases with speed rt frictional force = 0 / at end weight = frictional force		B1 B1 B1	[3]		
	(iii)	1.	frictional force increases		B1	[1]		
		2.	frictional force (constant) and then decreases		B1	[1]		
	(iv)		acceleration = $(v_2 - v_1) / t = (20 - 50) / (17 - 15)$ = (-) 15 m s ⁻²		C1 A1	[2]		
			W – F = ma W = 95 × 9.81 (= 932) F = (95 × 15) + 932 = 2400 (2360) (2357)N		C1 C1 A1	[3]		
2	(a) resistance = potential difference / current			B1	[1]			
	(b) (i)	voltr rhec	netal wire in series with power supply and ammeter oltmeter in parallel with metal wire heostat in series with power supply or potential divider arrangement		B1 B1	[0]		
		or va	ariable power supply		B1	[3]		
	(ii)		intercept on graph		B1	[1]		
		2.	scatter of readings about the best fit line		B1	[1]		
	(iii)	use	ection for zero error explained of <i>V</i> and corrected <i>I</i> values from graph stance = $V/I = 22.(2)\Omega$ [e.g. 4.0 / 0.18]		B1 C1 A1	[3]		
	(c) $R = 6.8 / 0.64 = 10.625$			C1				
		= (C = 1.	V + % <i>I</i> 0.1 / 6.8) × 100 + (0.01 / 0.64) × 100 47% + 1.56%		C1			
	ΔR R		0.0303 × 10.625 = 0.32 Ω 0.6 ± 0.3 Ω		A1	[3]		

Page 3				lynamicpape Syllabus	Paper	
			GCE AS/A LEVEL – October/November 2012	9702	21	
3	(a) pre	ssure	e = force / area		B1	[1]
	mo	lecule	es collide with object / surface and rebound es have change in momentum hence force acts	ro io logo	B1 B1	
	fewer molecules per unit volume on top of mountain / temperature is less hence lower speed of molecules hence less pressure					
	(c) (i)	W =	m / V × Vρg = 0.25 × 0.45 × 9.81 × 13600 : 15000 (15009)N		C1 C1 A1	[3]
	(ii)	p =	W/A (or using $p = \rho gh$) = 15009 / 0.45 = 3.3×10^4 Pa		A1	[1]
	(iii)	pres	ssure will be greater due to the air pressure (acting on th	e surface of the	liquid) B1	[1]
4	• •	•	ass through the elements / gaps / slits in the grating nto geometric shadow		M1 A1	[2]
	(b) (i)		displacements add to give resultant displacement each wavelength travels the same path difference or ar hence produce a maximum	e in phase	B1 B1 A0	[2]
			to obtain a maximum the path difference must be λ or p 360° / 2π rad λ of red and blue are different hence maxima at different angles / positions	hase difference	B1 B1 A0	[2]
	(ii)		= <i>d</i> sin θ sin 61° / (2 × 625 × 10 ^{−9}) = 7.0 × 10 ⁵		C1 A1	[2]
	(iii)	n = 1	= 2 × 625 is a constant (1250) 1 $\rightarrow \lambda$ = 1250 outside visible 3 $\rightarrow \lambda$ = 417 in visible		C1	
		n = 4	$4 \rightarrow \lambda = 312.5$ outside visible 420 nm		A1	[2]
5	(a) when the load is removed then the wire / body object does not return to its origin length		al shape B1	/ [1]		
	(b) (i)		ss = force / area 220 × 10 ⁶ × 1.54 × 10 ⁻⁶ = 340 (338.8)N		C1 A1	[2]
	(ii)	E =	$(F \times l) / (A \times e)$		C1	

- (ii) $E = (F \times l) / (A \times e)$ $e = (90 \times 10^6) \times 1.75 / (1.2 \times 10^{11}) = 1.31 \times 10^{-3} m$ C1 A1 [2]
- (c) the stress is no longer proportional to the extension B1 [1]

		www.dynamicpapers.com				
Page 4		Mark Scheme	Syllabus	Paper		
		GCE AS/A LEVEL – October/November 2012	9702	21		
6	• • •	rotons in the nucleus and 92 electrons around nucleus neutrons (in the nucleus)		B1 B1	[2]	
	(b) (i) c	α-particle travels short distance in air		B1	[1]	
	r e	very small proportion in backwards direction / large angles majority pass through with no /small deflections either most of mass is in very small volume (nucleus) and is empty space	charged or mo	B1 B1 st of atom B1	is [3]	
	(c) I = Q n/t = n/t =	2/t = (1.5 × 10 ⁻¹²)/(2 × 1.6 × 10 ⁻¹⁹) = 4.7 × 10 ⁶ s ⁻¹		C1 C1 A1	[3]	