UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Da	<u>ae</u> 3	,	WWW.dynamicpapers.c						COM Paper						
	га	ye z		GCE	AS/A I	EVEL	– Octol	ber/No	ovembe	r 201	1	<u>97</u>	02		22	
1	(a)	ave	rage	velocity	= 540 = 18 m	/ 30 s ⁻¹					·			·	C1 A1	[2]
	(b)	velo pos line	ocity z itive v / cur	zero at t value ar ve throu	ime $t = 0$ ad horizo agh $v = 0$) ontal lin) at $t = 4$	e for tin 45 s to r	ne <i>t</i> = negativ	5s to 38 ve veloc	ōs ity	b	111			B1 B1 B1	
		neg hor	izonta	al line to	time =	100 s	3 S WIT	n mag	Initude	iess t	nan p	ositive	value	and	B1	[4]
2	(a)	(i)	force	e is rate	of chan	ge of m	iomentu	ım							B1	[1]
		(ii)	work of th	k done is le force	s the pro	oduct of	f the for	ce and	d the di	stance	e <u>move</u>	<u>ed</u> in th	e direc	tion	B1	[1]
	(b)	(i)	W=	Fs or	W = ma	as or	W = m($v^2 - u^2$)/2 or	W=	force	× distaı	nce s		A1	[1]
		(ii)	as = W = RHS	(v ² – u ² mas h S repres) / 2 ar ence V ents terr	ny subje V = <i>m</i> (v ms of e	ect /² – u²) / nergy	/ 2 or wi	th <i>u</i> = 0	KE	= ½m	/ ²			M1 M1 A1	[3]
	(c)	(i)	work dista or F v ²	x done = 0 ance = V $x^2 = ma$ $x^2 = u^2 + 2$	= ½ × 15 VD / F = a = 2.53 2as s	00 × [(3 50625 33 (m s [⊸] = 133 m	30) ² — (1 0 / 3800 ²) 1	5) ²] (=) = 13	=506250 3 m))					C1 A1 C1 A1	[2]
		(ii)	the o be g	change ireater, l	in kineti nence d	c enerç istance	gy is gre is great	eater o ter (foi	or the w r same f	ork d orce)	one by	/ the fo	orce ha	s to	A1	[1]
			allov dista	v: same ance	accele	ration, s	same tir	me, sc	o greate	r ave	rage s	peed a	nd grea	ater		
3	(a)	(i)	stres	ss = forc	ce / (cro	ss-secti	onal) ar	rea							B1	[1]
		(ii)	strai	n = exte	ension /	<u>original</u>	length	or cha	ange in I	ength	n / <u>origi</u>	inal len	gth		B1	[1]
	(b)	<u>poii</u> whe	<u>nt</u> bey en the	yond wł e load / l	nich mat	erial do remove	bes not d	return	to the	origin	al leng	gth / sł	nape / s	size	B1	[1]

				www.dynamicpapers.					
Page 3			3	Mark Scheme: Teachers' version Syllabus					
				GCE AS/A LEVEL – October/November 2011	9702	22			
	(c)	UT wire	S is tł e is al	ne maximum force / <u>original</u> cross-sectional area ble to support / before it breaks		M1 A1	[2]		
		allo	ow one	e: maximum stress the wire is able to support / before	it breaks				
	(d)	(i)	strai corre	ght line from (0,0) ect shape in plastic region		M1 A1	[2]		
		(ii)	only	a straight line from (0,0)		B1	[1]		
	(e)	(i)	duct sma brittl	ile: initially force proportional to extension then a large Il change in force e: force proportional to extension until it breaks	extension for	B1 B1	[2]		
		(ii)	1.	does not return to its original length / permanent ext plastic region)	ension (as entere	d B1			
			2.	returns to original length / no extension (as no plas elastic region)	tic region / still i	n B1	[2]		
4	(a)	ele	ctric f	ield strength = force / positive charge		B1	[1]		
	(b)	(i)	at le direo	ast three equally spaced parallel vertical lines ction down		B1 B1	[2]		
		(ii)	E =	$1500 / 20 \times 10^{-3} = 75000 \mathrm{V m^{-1}}$		A1	[1]		
		(iii)	F = 0 (W = q = 1	qE - <i>mg</i> and) qE = <i>mg</i> mg / E = 5 × 10 ^{−15} × 9.81 / 75000		C1 C1			
			= (nega	6.5 × 10 ⁻¹⁹ C ative charge		A1 A1	[4]		
		(iv)	F > I drop	<i>mg</i> or <i>F</i> now greater will move <u>upwards</u>		B1 B1	[2]		
5	(a)	(i)	<i>I</i> ₁ +	$I_3 = I_2$		A1	[1]		
		(ii)	E ₁ =	$\frac{I_2 R_2}{2} + \frac{I_1 R_2}{2} + \frac{I_1 R_1}{1} + \frac{I_1 r_1}{1}$		A1	[1]		
		(iii)	E ₁ – = –I	E_2 $_3r_2 + I_1 (R_1 + r_1 + R_2 / 2)$		B1 B1	[2]		
	(b)	p.d the	. acro re is a	ess <u>BJ</u> of wire changes / resistance of <u>BJ</u> changes a difference in p.d across wire and p.d. across cell E_2		B1 B1	[2]		
6	(a)	wa (res	ves ov sultan	verlap t) displacement is the sum of the displacements of ea	ch of the waves	B1 B1	[2]		

	www.dynamicpapers.com						
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper				
	GCE AS/A LEVEL – October/November 2011	9702	22				

	(b)	wav ove	ves erlap	travelling in opposite directions overlap / incident and reflected waves		
		(alle wav	ow s ves l	superpose or interfere for overlap here) nave the same speed and frequency	B1 B1	[2]
	(c)	(i)	tim <i>f</i> =	e period = 4 × 0.1 (ms) 1 / <i>T</i> = 1 / 4 × 10 ⁻⁴ = 2500 Hz	C1 A1	[2]
		(ii)	1. 2.	the microphone is at an antinode and goes to a node and then an antinode / maximum amplitude at antinode and minimum amplitude at node $\lambda / 2 = 6.7 \text{ (cm)}$ $v = f\lambda$ $v = 2500 \times 13.4 \times 10^{-2} = 335 \text{ m s}^{-1}$	B1 C1 C1 A1	[1] [3]
				incorrect λ then can only score second mark		
7	(a)	(i)	the ext ten	half life / count rate / rate of decay / activity is the same no matter what ernal factors / environmental factors or two named factors such as nperature and pressure changes are applied	B1	[1]
		(ii)	the rad	observations of the count rate / count rate / rate of decay / activity / ioactivity during decay shows variations / fluctuations	B1	[1]

(b)	
· ·	1.0

property	α -particle	β-particle	γ-radiation	
charge	(+)2e	—е	0	
mass	4 <i>u</i>	9.11 × 10 ⁻³¹ kg	0	
speed	0.01 to 0.1 c	up to 0.99 <i>c</i>	С	

one mark for each correct line

(c) collision with moleculesB1causes ionisation (of the molecule) / electron is removedB1[2]

Β3

[3]