UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/41 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

		www.dynamicpa							
	Page 2	2		rk Scheme: Tea			Syllabus	Paper	•
			GCE AS	A LEVEL – Octo	ber/November	2010	9702	41	
				S	Section A				
1	(a) forc	(a) force per unit mass (ratio idea essential)							
	(b) gra	(b) graph: correct curvature from $(R, 1.0 g_s)$ & at least one other correct point							
	(c) (i)			nd Moon are in op field found by sul				M1	
		<i>or</i> so th	any other	sensible comme nt where it is zero	nt			A1 A0	[2]
	(ii)	(ii) $GM_{\rm E} / x^2 = GM_{\rm M} / (D - x)^2$ (6.0 × 10 ²⁴) / (7.4 × 10 ²²) = x ² / (60R _E - x) ² x = 54 R _E							[3]
	(iii)	(iii) graph: $g = 0$ at least $\frac{2}{3}$ distance to Moon g_E and g_M in opposite directions correct curvature (by eye) and $g_E > g_M$ at surface						B1 M1 A1	[3]
2	(a) (i)	no fo	orces (of attr	action or repulsio	n) between atom	ns / molecule	s / particles	s B1	[1]
	(ii)		of kinetic ar to random m	nd potential energ notion	y of atoms / mole	ecules		M1 A1	[2]
	(iii)	(ran	dom) kinetic	energy increases	s with temperatur	e		M1	
			otential ener ncrease in te	gy emperature increa	ases internal ene	rgy)		A1	[2]
	(b) (i)	zero	1					A1	[1]
	(ii)	work	$done = p\Delta$	V				C1	
	. ,		= 4.0 = 240	$10^{5} \times 6 \times 10^{-4}$ O J (ignore a	ny sign)			A1	[2]
	(iii)								
	. ,	change work done / J heating / J increase in internal energy / J							
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $							

$\begin{array}{c} P \rightarrow Q \\ Q \rightarrow R \\ R \rightarrow P \end{array}$	+240 0 -840	-600 +720 +480							
(correct signs essential)									

(each horizontal line correct, 1 mark – max 3)

Β3 [3]

_				www.dynamicpapers.com							
	Pa	ge 3	6	Mark Scheme: Teachers' version	Syllabus	Paper					
				GCE AS/A LEVEL – October/November 2010	9702	41					
3	(a)	(i)	resona	ance		B1	[1]				
		(ii)	ampliti	ude 16mm <u>and</u> frequency 4.6Hz		A1	[1]				
	(b)	(i)	a = 4	-) $\omega^2 x$ and $\omega = 2\pi f$ $\pi^2 \times 4.6^2 \times 16 \times 10^{-3}$ $3.4 \mathrm{m s^{-2}}$		C1 C1 A1	[3]				
		(ii)	F = m = 50	na 0 × 10 ^{−3} × 13.4		C1					
			= 2.	.0 N		A1	[2]				
	(c)		•	^s 'below' given line and never zero 4.6 Hz (or slightly less) and flatter		M1 A1	[2]				
4	(a)	cha	irge / po	otential (difference) (<i>ratio must be clear</i>)		B1	[1]				
	(b)	(i)	V = Q	$/ 4\pi \varepsilon_0 r$		B1	[1]				
		(ii)	C = Q so C ∝	$V = 4\pi \varepsilon_0 r$ and $4\pi \varepsilon_0$ is constant or r		M1 A0	[1]				
	(c)	(i)	r = C / r = (6.8 = 6.1 >	$4\pi\epsilon_0 r$ 8 × 10 ⁻¹²) / (4 π × 8.85 × 10 ⁻¹²) < 10 ⁻² m		C1 C1 A1	[3]				
		(ii)		$V = 6.8 \times 10^{-12} \times 220$ $1.5 \times 10^{-9} \text{ C}$		A1	[1]				
	(d)	(i)	V = Q/ = 83 V	$C = (1.5 \times 10^{-9}) / (18 \times 10^{-12})$		A1	[1]				
		(ii)	either	energy = $\frac{1}{2}CV^2$ $\Delta E = \frac{1}{2} \times 6.8 \times 10^{-12} \times 220^2 - \frac{1}{2} \times 18 \times 10^{-12} \times 83^2$ = 1.65 × 10 ⁻⁷ - 6.2 × 10 ⁻⁸		C1 C1					
			or	= 1.65×10^{-7} J = 1.03×10^{-7} J energy = $\frac{1}{2}$ QV $\Delta E = \frac{1}{2} \times 1.5 \times 10^{-9} \times 220 - \frac{1}{2} \times 1.5 \times 10^{-9} \times 83$ = 1.03×10^{-7} J		A1 (C1) (C1) (A1)	[3]				

				WWW.0	dynamicpape	rs.com	
	Pa	ge 4	4 Mark Scheme: Teachers' version Syllabus				•
			GCE AS/A LEVEL – October/November 2010 9702			41	
5	(a)	field	d into	(the plane of) the paper		B1	[1]
	(b)		² / r = = (2	e to magnetic field <u>provides</u> the centripetal force <i>Bqv</i> $0 \times 1.66 \times 10^{-27} \times 1.40 \times 10^{5}) / (1.6 \times 10^{-19} \times 6.4 \times 10^{-2})$ 454 T)	B1 C1 B1 A0	[3]
	(c)	(i)	<u>sem</u>	icircle with diameter greater than 12.8 cm		B1	[1]
		(ii)	new	flux density = $\frac{22}{20} \times 0.454$ B = 0.499 T		C1 A1	[2]
6	(a)	(i)	e.g.	prevent flux losses / improve flux linkage		B1	[1]
		(ii)	e.m.	in core is changing .f. / current (induced) <u>in core</u> iced current in core causes heating		B1 B1 B1	[3]
	(b)	(i)		value of the direct current producing same (mean) pow resistor	er / heating	M1 A1	[2]
		(ii)	-	ver in primary = power in secondary $I_P = V_S I_S$		M1 A1	[2]
7	(a)	(i)	e.g.	electron / particle diffraction		B1	[1]
		(ii)	e.g.	photoelectric effect		B1	[1]
	(b)	(i)	6			A1	[1]
		(ii)	$\lambda = 1$	nge in energy = 4.57×10^{-19} J hc / E .63 × 10 ⁻³⁴ × 3.0 × 10 ⁸) / (4.57 × 10 ⁻¹⁹)		C1	
			= 4.4	$4 \times 10^{-7} \mathrm{m}$		A1	[2]
8	(a)			of a heavy nucleus (<i>not atom/nuclide</i>) (lighter) nuclei of <u>approximately same mass</u>		M1 A1	[2]
	(b)	¹ 0 42 10 73Li		(allow $\frac{4}{2}\alpha$)		M2 A1	[3]
	(c)			particles have kinetic energy	in rode /	B1	
		range of particles in the control rods is short / particles stopped in rods / lose kinetic energy in rods kinetic energy of particles converted to thermal energy					[3]

	Page 5			Mark Scheme: Teachers' version	Syllabus	ers.com Paper	
	īu	900	, 	GCE AS/A LEVEL – October/November 2010	9702	41	
				Section B			
9	(a)	(i)	non-	inverting (amplifier)		B1	[1]
		(ii)	(G =	$(1 + R_2 / R_1)$		B1	[1]
	(b)	(i)	•	= 1 + 100 / 820 ut = 17 mV		C1 A1	[2]
		(ii)	(<i>R</i> ₂ / (1 +	R_1 scores 0 in (a)(ii) but possible 1 mark in each of (b) R_1 / R_2) scores 0 in (a)(ii) , no mark in (b)(i) , possible 1 R_2 / R_1) or R_1 / R_2 scores 0 in (a)(ii) , (b)(i) and (b)(ii))		A1	[1]
10	(a)	(i)	dens	sity × <u>speed of wave</u> (in the medium)		B1	[1]
		(ii)	ρ = =	$(7.0 \times 10^{6}) / 4100$ 1700 kg m ⁻³		A1	[1]
	(b)	(i)	I = I	$T_{T} + I_{R}$		B1	[1]
		(ii)	1. α	$= (0.1 \times 10^{6})^{2} / (3.1 \times 10^{6})^{2}$ = 0.001		C1 A1	[2]
			2. α	≈ 1		A1	[1]
	(c)	eith or		very little transmission at an air-skin boundary (almost) complete transmission at a gel-skin boundary when wave travels in or out of the body no gel, majority reflection with gel, little reflection when wave travels in or out of the body		M1 M1 (M1) (M1) (A1)	[3]
11	(a)	(i)	unwa	anted random power / signal / energy		B1	[1]
		(ii)	loss	of (signal) power / energy		B1	[1]
	(b)	(i)	eithe	er signal-to-noise ratio at mic. = $10 \log (P_2 / P_1)$ = $10 \log (\{2.9 \times 10^{-6}\} / \{3$.4 × 10 ⁻⁹ })	C1	
				= 29 dB maximum length = (29 – 24) / 12 = 0.42 km = 420 m	,,	A1 C1 A1	[4]
			or	signal-to-noise ratio at receiver = 10 lg (P_2 / P_1) at receiver, 24 = 10 lg $(P / \{3.4 \times 10^{-9}\})$ $P = 8.54 \times 10^{-7}$ W power loss in cables = 10 lg $(\{2.9 \times 10^{-6}\} / \{8.54 \times 10^{-6}\})$ = 5.3 dB) ⁻⁷ })	(C1) (A1) (C1)	
				length = 5.3 / 12 km = 440 m		(A1)	

	www.dynamicpape Page 6 Mark Scheme: Teachers' version Syllabus							
	Ра	де б	-	A LEVEL – October/November 2010	Syllabus 9702	Paper 41	-	
			n amplifier ed to the m	icrophone ers scores no mark)		M1 A1	[2]	
12	(a)	(carrier wave) transmitted from Earth to satellite(1)satellite receives greatly attenuated signal(1)signal amplified and transmitted back to Earth(1)at a different (carrier) frequency(1)different frequencies prevent swamping of uplink signal(1)e.g. of frequencies used (6/4 GHz, 14/11 GHz, 30/20 GHz)(1)(two B1 marks plus any two other for additional physics)(1)		(1) (1)	B1 B1 B2	[4]		
	(b)	advantage	e.g.	much shorter time delay because orbits are much lower whole Earth may be covered in several orbits / with network		M1 A1 (M1) (A1)		
		disadvanta	ige: e.g.	<i>either</i> must be tracked <i>or</i> limited use in any one orbit more satellites required for continuous of	operation	M1 A1	[4]	