UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2008 question paper

9702 PHYSICS

9702/04 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	www.dynamicpapers.com					
	Pag	e 2	Mark Scheme GCE A/AS LEVEL – October/November 2008	Syllabus 9702	Paper 04	r
			GCE A/AS LEVEL - October/November 2008	9702	04	
Se	ction	ΝA				
1	(a)	(i)	$F = GMm / R^2$		B1	[1]
		(ii)	$F = mR\omega^2$		B1	[1]
		(iii)	reaction force = $GMm / R^2 - mR\omega^2$ (allow e.c.f.)		B1	[1]
	(b)	(i)	<i>either</i> value of <i>R</i> in expression $R\omega^2$ varies or $mR\omega^2$ no longer parallel to GMm / R^2 / normal to becomes smaller as object approaches a pole / is zero		B1 B1	[2]
		(ii)	1. acceleration = $6.4 \times 10^6 \times (2\pi / \{8.6 \times 10^4\})^2$ = 0.034 m s ⁻² 2. acceleration = 0		C1 A1 A1	[2] [1]
	(c)	e.g.	. 'radius' of planet <u>varies</u> density of planet <u>not constant</u> planet spinning nearby planets / stars (<i>any sensible comments, 1 mark each, maximum 2</i>)		B2	[2]
2	(a)	 a) (Thermal) energy / heat required to convert unit mass of solid to liquid at its normal melting point / without any change in temperature (reference to 1 kg or to ice → water scores max 1 mark) 			M1 A1	[2]
	(b)	(i)	To make allowance for heat gains from the atmosphered	re	B1	[1]
		(ii)	e.g. constant rate of production of droplets from funne constant mass of water collected per minute in beaker (<i>any sensible suggestion, 1 mark</i>)		B1	[1]
		(iii)	mass melted by heater in 5 minutes = $64.7 - \frac{1}{2} \times 16.6$ $56.4 \times 10^{-3} \times L = 18$ L = 320 kJ kg ⁻¹ (Use of $m = 64.7$, giving $L = 278$ kJ kg ⁻¹ , scores max 2 use of $m = 48.1$, giving $L = 374$ kJ kg ⁻¹ , scores max 2	1 mark	C1 C1 A1	[3]
3	(a)		eleration / force (directly) proportional to displacement		M1	
		and	I either directed towards fixed point or acceleration & displacement in opposite direction	IS	A1	[2]
	(b)	(i)	maximum / minimum height / 8mm above cloth / 14m	m below cloth	B1	[1]
		(ii)	1. $a = 11 \text{ mm}$ 2. $\omega = 2\pi f$		A1 C1	[1]
			= $2\pi \times 4.5$ = 28.3 rad s ⁻¹ (<i>do not allow 1 s.f.</i>)		A1	[2]

			W	ww.dynamicpa	pers.com	n
	Pag		Mark Scheme	Syllabus	Paper	
		GCE	A/AS LEVEL – October/November 2008	9702	04	
	(c)		$3 \times 11 \times 10^{-3}$ 31 m s ⁻¹ (do not allow 1 s.f.)		C1 A1	[2]
		(ii) $v = \omega v$ y = 3 m = 28.	$\sqrt{(a^2-y^2)}$		C1 C1 A1	[3]
4	(a)	$\Delta U = q + w$	(allow correct word equation)		B1	[1]
	(b)	pot so i or kine so i	etic energy constant because temperature cor ential energy constant because no intermolect no change in internal energy etic energy and potential energy both constant no change in internal energy son for <i>either</i> constant k.e. <i>or</i> constant p.e. give	ular forces t (M1) (A1)	M1 M1 A1	[3]
5	(a)	$2 \times \frac{1}{2}mv^2 = 2 \times \frac{1}{2} \times 2 \times 2 \times 1$	$\frac{1.67 \times 10^{-27} \times v^2}{10^{-19})^2 / (4\pi \times 8.85 \times 10^{-12} \times 1.1 \times 10^{-14})}$	ential energy	B1 C1 M1 A0	[3]
	• •	$\frac{1}{2} m < c^2 > = 0$	c^{2} and $pV = NkT$ $\frac{3}{2}kT$ (award 1 mark of first two if $< c^{2}$ not us $T \times 10^{-27} \times (2.5 \times 10^{6})^{2} = \frac{3}{2} \times 1.38 \times 10^{-23} \times T$ K	sed)	C1 C1 C1 A1	[4]
	(c)	tempera (<i>any</i> se	<u>ery</u> high temperature ature found in stars nsible comment, 1 mark) 0 ⁶ K, should comment that too low for fusion t	o occur)	B1	[1]
6	(a)	• •	prevent loss of magnetic flux improves flux linkage with secondary		B1	[1]
			eddy current (losses) losses of energy (in core)		B1 B1	[2]
	(b)	rate of c	d) e.m.f. proportional to / equal to change of (magnetic) flux (linkage)		M1 A1	[2]
		changin flux link	ag current in primary gives rise to(1)ag flux in core(1)s with the secondary coil(1)ag flux in secondary coil, inducing e.m.f.(1))		

Doo	10 4	www.dynamicpapers.com				
Pag	je 4	Mark Scheme GCE A/AS LEVEL – October/November 2008	Syllabus 9702	Paper 04		
		GUE A/A3 LEVEL - UCTODEF/NOVEMBER 2008	9102	04		
(c)	_	(any three, 1 each to max 3) can change voltage easily / efficiently high voltage transmission reduces power losses		B3	[3]	
	(any	v two sensible suggestions, 1 each)		B2	[2]	
7 (a)	e.g.	<pre>'instantaneous' emission (of electrons) threshold frequency below which no emission (max) electron energy dependent on frequency</pre>				
		(max) <u>electron</u> energy not dependent on intensity				
	(00)	rate of emission (of electrons) depends on intensity		D 2	101	
	(any	v three sensible suggestions, 1 each)		B3	[3]	
(b)	(i)	'packet' / quantum of energy		M1	101	
		of electromagnetic energy / radiation		A1	[2]	
	(ii)	discrete wavelengths mean photons have particular e	neraies	M1		
	()	energy of photon determined by energy change of (or	-	M1		
		so discrete energy levels	,	A0	[2]	
(c)	(i)	three energy changes shown correctly		B1		
		arrows 'pointing' in correct direction wavelengths correctly identified		B1 B1	[3]	
		wavelengths correctly identified		DI	[3]	
	(ii)	chooses λ = 486 nm		C1		
	()	$\Delta E = hc / \lambda$		C1		
		$= (6.63 \times 10^{-34} \times 3.0 \times 10^8) / (4.86 \times 10^{-9})$				
		= 4.09×10^{-19} J (allow 2 s.f.)		A1	[3]	
8 (a)	rogi	on (of space) / area where		B1		
o (a)		rce is experienced by		M1		
		ent-carrying conductor / moving charge / permanent m	aanet	A1	[3]	
					[•]	
(b)	(i)	electric		B1	[1]	
	(ii)	gravitational		B1	[1]	
	(iii)	magnetic		B1	[1]	
	(iv)	magnetic		B1	[1]	

				apers.com		
F	Pag	e 5	Mark Scheme	Syllabus	Pape	r
			GCE A/AS LEVEL – October/November 2008	9702	04	
Sect	tion	В				
9	(a)		as less attenuation (per unit length) er (repeater) amplifiers / longer <u>uninterrupted</u> length		B1 B1	[2
	(b)	eithe or	er limited range (so) cells do not overlap (appreciably) short wavelength so convenient length aerial (on mobile phone)	(B1) (B1)	B1 B1	[2]
	(c)		e bandwidth / large information carrying capacity rent so that uplink signal not swamped by downlink		B1 B1	[2]
10	(a)	• •	 inverting (amplifier) gain of op-amp is very large / infinite non-inverting input is at earth / 0V for amplifier not to saturate, P must be at about earth 	arth / 0 V	B1 B1 B1 B1	[1] [3]
			input resistance is very large (so) current in R_1 = current in R_2 $I = V_{IN} / R_1$ $I = -V_{OUT} / R_2$ (minus sign can be in either of the e hence gain = $V_{OUT} / V_{IN} = -R_2 / R_1$	quations)	B1 B1 B1 B1 A0	[4]
	(b)		 feedback resistance = 33.3 kΩ gain (= 33.3 / 5) = 6.66 V_{OUT} (= 6.66 × 1.2) = 8.0 V (+ or – acceptable, a feedback resistance = 8.33 kΩ V_{OUT} (= {6.66 × 1.2} / 5) = 2.0 V (+ or – acceptable) (Increase in lamp-LDR distance gives) decrease in ir 	e, allow 1 s.f.)	C1 C1 A1 C1 A1 M1	[3] [2]
			<u>Feedback</u> / <u>LDR</u> resistance increases voltmeter reading increases / becomes more negativ	е	M1 A1	[3]
11	(a)	any	mage: (thin) slice (through structure) further detail e.g. built up from many 'slices' / 3-D ima y image: 'shadow' image (of whole structure) / 2-D in	-	B1 B1 B1	[3]
	(b)	these repe to bu 3-D i com	y image <u>of slice</u> taken from many different angles e images are combined (and processed) ated for many different slices uild up a 3-D image image can be rotated puter required to store and process huge quantity of <i>t five, 1 each to max 5</i>)	(1) (1) (1) (1) (1) data (1)	В5	[5]