

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS

9702/42 May/June 2016

Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

			www.dynamic			
Pa	age 2	2	Mark Scheme S Cambridge International AS/A Level – May/June 2016	Syllabus 9702	Pap 42	
				5102		
1	(a)	(i)	gravitational force provides/is the centripetal force		B1	
			same gravitational force (by Newton III)		B1	[2]
		(ii)	$\omega = 2\pi/T$			
			= $2\pi/(4.0 \times 365 \times 24 \times 3600)$		C1	
			= 5.0 (4.98) \times 10 ⁻⁸ rad s ⁻¹		A1	[2]
	(b)	(i)	(centripetal force =) $M_{\rm A}d\omega^2 = M_{\rm B}(2.8 \times 10^8 - d)\omega^2$			
			$Or M_{\rm A}d_{\rm A} = M_{\rm B}d_{\rm B}$		C1	
			$M_{\rm A}/M_{\rm B} = 3.0 = (2.8 \times 10^8 - d)/d$		C1	
			$d = 7.0 \times 10^7 \mathrm{km}$		A1	[3]
		(ii)	$GM_{\rm A}M_{\rm B}/(2.8\times10^{11})^2 = M_{\rm A}d\omega^2$		B1	
			$M_{\rm B} = (2.8 \times 10^{11})^2 \times d\omega^2 / G$ = $(2.8 \times 10^{11})^2 \times (7.0 \times 10^{10}) \times (4.98 \times 10^{-8})^2 / (6.67 \times 10^{-11})$		C1	
			$= 2.0 \times 10^{29} \text{ kg}$		A1	[3]
2	(a)	(i)	number of <u>atoms/nuclei</u> in 12 g of carbon-12		B1	[1]
		(ii)	amount of substance		M1	
			containing N_A (or 6.02 × 10 ²³) particles/molecules/atoms			
			or which contains the same number of particles/atoms/molecules as the are atoms in 12g of carbon-12	ere	A1	[2]
	(b)	рV	= nRT			
		2.0	× 10^7 × 1.8 × 10^4 × 10^{-6} = n × 8.31 × 290, so n = 149 mol or 150 mol		A1	[1]
	(c)	(i)	<i>V</i> and <i>T</i> constant and so pressure reduced by 5.0% pressure = $0.95 \times 2.0 \times 10^7$		C1	
			or			
			calculation of new n (= 142.5 mol) and correct substitution into $pV = r$	nRT ((C1)	
			pressure = $1.9 \times 10^7 \text{ Pa}$		A1	[2]

	www.dynamicpapers.c					
P	age 3	Mark Scheme Cambridge International AS/A Level – May/June 2016	Syllabus 9702	Pap 42		
L	(ii)	loss is 5/100 × 150 mol = 7.5 mol	0102			
		$\frac{\partial r}{\Delta N} = 4.52 \times 10^{24}$		C1		
		$t = (7.5 \times 6.02 \times 10^{23}) / 1.5 \times 10^{19}$ or				
		$t = 4.52 \times 10^{24} / 1.5 \times 10^{19}$		C1		
		$= 3.0 \times 10^5 s$		A1	[3]	
3	(a) no <i>or</i>	net energy transfer between the bodies				
	bo	dies are at the same temperature		B1	[1]	
	(b) (i)	thermocouple, platinum/metal resistance thermometer, pyrometer		B1	[1]	
	(ii)	thermistor, thermocouple		B1	[1]	
	(c) (i)	change = 11.5K		B1	[1]	
	(ii)	final temperature = 311.2K		B1	[1]	
4	(a) (i)	$T = 0.60 \text{ s} \text{ and } \omega = 2\pi/T$		C1		
		$\omega = 10(10.47) \text{ rad s}^{-1}$		A1	[2]	
	(ii)	energy = $\frac{1}{2}m\omega^2 x_0^2$ or $\frac{1}{2}mv^2$ and $v = \omega x_0$		C1		
		= $\frac{1}{2} \times 120 \times 10^{-3} \times (10.5)^2 \times (2.0 \times 10^{-2})^2$				
		$= 2.6 \times 10^{-3} \text{ J}$		A1	[2]	
	(b) ske	etch: smooth curve in correct directions		B1		
	pe	ak at f		M1		
	am	plitude never zero and line extends from 0.7 <i>f</i> to 1.3 <i>f</i>		A1	[3]	
	(c) ske	etch: peaked line always below a peaked line A		M1		
	pe	ak not as sharp <u>and</u> at (or slightly less than) frequency of peak in line	A	A1	[2]	

		www.dynam	icpapers.	<u>co</u> m	
age 4	4	Mark Scheme	Syllabus	Pape	er
		Cambridge International AS/A Level – May/June 2016	9702	42	
(a)	am	plitude of the carrier wave varies		M1	
	in s	ynchrony with displacement of the information/audio signal		A1	[2]
(b)	(i)	10 kHz		A1	[1]
	(ii)	5 kHz		A1	[1]
(c)	(i)	24 = 10 lg (P_{MIN} /{5.0 × 10 ⁻¹³ })		C1	
		$P_{\rm MIN}$ = 1.3 (1.26) × 10 ⁻¹⁰ W		A1	[2]
	(ii)	$45 \times 2 = 10 \text{ lg} (\{500 \times 10^{-3}\}/P)$			
		$P = 5.0 \times 10^{-10} (W)$		M1	
		$P > P_{MIN}$ so yes		A1	
		or			
		maximum attenuation calculated to be 96 (dB) $96 \text{ dB} > 2 \times 45 \text{ dB}$ so yes		. ,	
		or			
		maximum length of wire calculated to be 48 (km) actual length 45 km < 48 km so yes		. ,	
		or			
		maximum attenuation per unit length calculated to be $2.2 dB km^{-1}$ 2.2 dB km ⁻¹ > 2.0 dB km ⁻¹ so yes			[2]
(a)		s perpendicular to surface			
		s are radial		M1	
	line	s <u>appear</u> to come from centre		A1	[2]
(b)	(i)	$F_{\rm E} = (1.6 \times 10^{-19})^2 / 4\pi \varepsilon_0 x^2$		C1	
		$F_{\rm G} = G \times (1.67 \times 10^{-27})^2 / x^2$		C1	
		$F_{\rm E}/F_{\rm G} = (1.6 \times 10^{-19})^2 \times (8.99 \times 10^9) / [(1.67 \times 10^{-27})^2 \times (6.67 \times 10^{-11})]$ = 1.2 (1.24) × 10 ³⁶		A1	[3]
	(ii)	$F_{\rm E} \gg F_{\rm G}$		B1	[1]
	(a) (b) (c) (a)	in s (b) (i) (ii) (c) (i) (ii) (a) line or line line (b) (i)	age 4Mark SchemeCambridge International AS/A Level – May/June 2016(a) amplitude of the carrier wave varies in synchrony with displacement of the information/audio signal(b) (i) 10 kHz(ii) 5 kHz(c) (i) 24 = 10 lg ($P_{MIN}/\{5.0 \times 10^{-13}\}$) $P_{MIN} = 1.3 (1.26) \times 10^{-10} W$ (ii) 45 × 2 = 10 lg ($(500 \times 10^{-3})/P$) $P = 5.0 \times 10^{-10} (W)$ $P > P_{MIN}$ so yes or maximum attenuation calculated to be 96 (dB) 96 dB > 2 × 45 dB so yes or maximum length of wire calculated to be 48 (km) actual length 45 km < 48 km so yes oror(a) lines perpendicular to surface or lines are radial lines appear to come from centre(b) (i) $F_{E} = (1.6 \times 10^{-19})^2 / 4\pi c_0 x^2$ $F_{G} = G \times (1.67 \times 10^{-27})^2 / x^2 (6.67 \times 10^{-11})$	age 4Mark SchemeSyllabusCambridge International AS/A Level – May/June 20169702(a) amplitude of the carrier wave varies in synchrony with displacement of the information/audio signal(b) (i) 10kHz (ii) 5kHz(c) (i) 24 = 10 lg ($P_{MIN}/{5.0 \times 10^{-13}}$) $P_{MIN} = 1.3 (1.26) \times 10^{-10}$ W(ii) $45 \times 2 = 10$ lg ($(500 \times 10^{-3})/P$) 	Cambridge International AS/A Level – May/June 2016 9702 42 (a) amplitude of the carrier wave varies M1 in synchrony with displacement of the information/audio signal A1 (b) (i) 10kHz A1 (ii) 5kHz A1 (c) (i) 24 = 10 lg ($P_{MIN}/\{5.0 \times 10^{-13}\}$) C1 $P_{MIN} = 1.3 (1.26) \times 10^{-10} W$ A1 (iii) 45 × 2 = 10 lg ($(500 \times 10^{-3})/P$) P = 5.0 × 10^{-10} (W) $P = 5.0 \times 10^{-10} (W)$ M1 $P > P_{MIN}$ so yes A1 or maximum attenuation calculated to be 96 (dB) (M1) 96 dB > 2 × 45 dB so yes (A1) or maximum attenuation calculated to be 48 (km) (A1) or maximum attenuation per unit length calculated to be 2.2 dB km ⁻¹ (M1) or maximum attenuation per unit length calculated to be 2.2 dB km ⁻¹ (M1) or maximum attenuation per unit length calculated to be 2.2 dB km ⁻¹ (M1) (a) lines perpendicular to surface or (A1) or fines are radial M1 lines appear to come from centre A1 (b) (i)

		www.dynamicpapers.com					
P	age 5	Mark Scheme	Syllabus	Pap			
		Cambridge International AS/A Level – May/June 2016	9702	42			
7	(a) (e.g. storing energy blocking d.c. in oscillator circuits in tuning circuits in timing circuits					
	i	any two		B2	[2]		
	(b)	i) $1/6 + 1/C + 1/C = 1/4$		C1			
	,	$C = 24 \mu\text{F}$		A1	[2]		
	(i) $Q = CV$ = 4.0 × 10 ⁻⁶ × 12		C1			
		= 48 µC		A1	[2]		
	(i	i) 1. 48μC		A1			
		2 . 24 μC		A1	[2]		
8	(a)	i) gain = <u>voltage</u> output/ <u>voltage</u> input		B1	[1]		
	(i) changes in V_{OUT} occur immediately when V_{IN} changes 		M1 A1			
		or					
		changes in $V_{\rm IN}$ result in immediate changes to $V_{\rm OUT}$		(M1) (A1)	[2]		
	(b)	$12 = 1 + R/(1.5 \times 10^3)$		C1			
		R = 16.5 kΩ		A1	[2]		
	(c) :	straight line from (0,0) to (0.75 t_1 , 9.0 V)		B1			
	I	norizontal line from endpoint of straight line to t_1		B1			
		$-9V$ to $-9V$ (or v.v.) at t_1		B1			
		correct line to t_2		B1	[4]		

·			www.dynam			
Page 6		6 Mark Scheme Cambridge International AS/A Level – May/June 2016		Syllabus 9702	Paper 42	
•	(a)	(1)				
9	(a)	(i)	number density of charge carriers/ <u>free</u> electrons or			
			number per unit volume of charge carriers/ <u>free</u> electrons		B1	[1]
		(ii)	PX or QY or RZ		B1	[1]
	(b)	(i)	$V_{\rm H}$ is inversely proportional to <i>n</i>		B1	
			for semiconductors, n is (much) smaller than for metals		B1	[2]
		(ii)	magnetic field would deflect holes and electrons in same direction		B1	
			(because) electrons are (-)ve, holes are (+)ve		M1	
			so $V_{\rm H}$ has opposite polarity/opposite sign		A1	[3]
10	(a)	iror	n rod changes flux (density)/field		B1	
		cha	inge of <u>flux in coil Q</u> causes induced e.m.f.		B1	[2]
	(b)	con	stant reading (either polarity) from time zero to near t_1		B1	
		spil	the in one direction near t_1 clearly showing a larger voltage		M1	
		of c	opposite polarity		A1	
		zer	o reading from near t_1 to t_2		B1	[4]
11	(a)	poi	nt P shown at 'lower end' of load		B1	[1]
	(b)	V _{r.m}	$h_{\rm s.s.} = 6.0 / \sqrt{2} = 4.24 \rm V$		C1	
		I _{r.m.}	s. = $4.24/(2.4 \times 10^3)$ = 1.8×10^{-3} A		A1	[2]
	(c)	(i)	capacitor in parallel with load		B1	[1]
		(ii)	line from peak to curve at 3.0 V for either half- or full-wave rectified		M1	
			correct curvature on line (gradient becoming more shallow)		A1	
			line drawn as for full-wave rectified		A1	[3]

www.dynamicpapers.com						
Page 7		7		yllabus	Pap	
			Cambridge International AS/A Level – May/June 2016	9702	42	
12	(a)	(i)	(X–ray) <u>photon</u> produced when electron/charged particle is stopped/accelerated (suddenly)		B1	
			range of accelerations (in target)		M1	
			hence distribution of wavelengths		A1	[3]
		(ii)	electron gives all its energy to one photon		B1	
			electron stopped in single collision		B1	[2]
		(iii)	de-excitation of (orbital) electrons in target/anode/metal		B1	[1]
	(b)	(i)	aluminium sheet/filter/foil (placed in beam from tube)		B1	[1]
		(ii)	(long wavelength X-rays) do not pass through the body		B1	[1]
13	(a)	(ph	otons of) electromagnetic radiation		M1	
		em	itted from nuclei		A1	[2]
	(b)	line	of best fit drawn		B1	
		rec or	ognises μ as given by the gradient of best-fit line			
			$C = \ln C_0 - \mu x$		B1	
		μ=	0.061 mm ^{-1} (within ±0.004 mm ^{-1} , 1 mark; within ±0.002 mm ^{-1} , 2 marks)	A2	[4]
	(c)		minium is less absorbing (than lead)			
		<i>or</i> gra	dient of graph would be less		M1	
		so ,	<i>u</i> is smaller		A1	[2]