

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS

9702/23 May/June 2016

Paper 2 AS Level Structured Questions MARK SCHEME Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

	www.dynamicpapers.com								
Page 2		2					Syllabus	Pap	
				Cambridge Internatio	onal AS/	A Level – May/June 2016	9702	23	1
1	(a)	sca	lars	: energy, power and tin	ne			A1	
		vec	tors	: momentum and weig	ht			A1	[2]
	(b)	(i)	 triangle with right angles between 120 m and result displacement from start to fini labelled R 					B1	[1]
		(ii)	1.	average speed (= 20	0/27) = 7	7.4 m s ⁻¹		A1	[1]
			2.	resultant displaceme	nt (= [120	0 ² + 80 ²] ^{1/2}) = 144 (m)		C1	
				average velocity (= 1	44/27) =	• 5.3(3)ms ⁻¹		A1	
				direction (= tan ⁻¹ 80/	120) = 34	4° (33.7)		A1	[3]
2	(a)	by	a co	nstant amount		aller than (or varying from) the tr	ue reading	B1	
		ran	dom	n: scatter in readings at	bout the t	true reading		B1	[2]
	(b)	•	cisio	on: the size of the smal	lest divis	ion (on the measuring instrumen	ıt)		
		or 0.0	1 mr	n for the micrometer				B1	
		acc	cura	cy: how close (diamete	r) value i	s to the true (diameter) value		B1	[2]
3	(a)					nergy/ability to do work of a <u>mas</u> ht in a gravitational field	<u>s</u> that it	B1	
			kinetic energy is energy/ability to do work a object/body/mass has due to its speed/velocity/motion/movement				B1	[2]	
	(b)	(i)	s	= [(u + v)t]/2	or	acceleration = 9.8/9.75 (using	gradient)	C1	
				= [(7.8 + 3.9) × 0.4]/2	or	$s = 3.9 \times 0.4 + \frac{1}{2} \times 9.75 \times (0.4)$) ²	C1	
			s	= 2.3(4) m				A1	[3]
		(ii)	а	= (v - u)/t or gradient	of line			C1	
				= (7.8 – 3.9)/0.4 = 9.8	(9.75) m	$n s^{-2}$ (allow ± $\frac{1}{2}$ small square in re	adings)	A1	[2]

	www.dynamicpapers.cor					
P	age 3	Mark Scheme Syllabus				
		Cambridge International AS/A Level – May/June 2016 9702	2 2	3		
	(ii) KE = $\frac{1}{2}mv^2$	C1			
		change in kinetic energy = $\frac{1}{2}mv^2 - \frac{1}{2}mu^2$				
		$= \frac{1}{2} \times 1.5 \times (7.8^2 - 3.9^2)$	C1			
		= 34 (34.22) J	A1	[3]		
	(c) w	ork done = force × distance (moved) or <i>Fd</i> or <i>Fx</i> or <i>mgh</i> or <i>mgd</i> or <i>mgx</i>	M1			
		= $1.5 \times 9.8 \times 2.3$ = 34 (33.8) J (equals the change in KE)	A1	[2]		
4	(a) (I	esultant force = 0) (equilibrium)				
		nerefore: weight – upthrust = force from thin wire (allow tension in wire)				
	0 5	r .3 (N) – upthrust = 4.8 (N)	B1	[1]		
	(b) d	ifference in weight = upthrust or upthrust = 0.5 (N)				
		$0.5 = \rho ghA$ or $m = 0.5/9.81$ and $V = 5.0 \times 13 \times 10^{-6} (m^3)$	C1			
		ho = 0.5/(9.81 × 5.0 × 13 × 10 ⁻⁶)	C1			
		= 780 (784) kg m ⁻³	A1	[3]		
5	(a) th	ne total momentum of a system (of colliding particles) remains constant	M1			
	р	provided there is no resultant external force acting on the system/isolated or closed system				
	С			[2]		
	(b) () the <u>total</u> kinetic energy before (the collision) is equal to the total kinetic energy after (the collision)	B1	[1]		
	/;) $p (= mv = 1.67 \times 10^{-27} \times 500) = 8.4 (8.35) \times 10^{-25} \text{ Ns}$	A1			
	-		B1	[1]		
	(ii	2. $mv_{\rm A} \sin 60^\circ + mv_{\rm B} \sin 30^\circ$	B1	[0]		
			DI	[2]		
	(iv) 8.35×10^{-25} or $500m = mv_A \cos 60^\circ + mv_B \cos 30^\circ$ and				
		$0 = mv_A \sin 60^\circ + mv_B \sin 30^\circ$ or using a vector triangle	C1			
		$v_{\rm A} = 250{\rm ms^{-1}}$	A1			
		$v_{\rm B} = 430 \ (433) {\rm m s^{-1}}$	A1	[3]		

Page	4	www.dynamicpapers.com				
гауе 4	+	Mark SchemeSyllabusCambridge International AS/A Level – May/June 20169702		Paper 23		
6 (a)	ohr	ohm is volt per ampere or volt/ampere		1 [′		
(b)	(i)	$R = \rho l / A$	В	1		
		$R_{\rm P} = 4\rho(2l)/\pi d^2$ or $8\rho l/\pi d^2$ or $R_{\rm Q} = \rho l/\pi d^2$ or ratio idea e.g. length is halved hence R halved and diameter is halved hence R is 1/4	ce C	1		
		$R_{Q} (= 4\rho l/\pi 4d^{2}) = \rho l/\pi d^{2}$ = $R_{P}/8$ (= 12/8) = 1.5 Ω	A	1 [:		
	(ii)	power = $I^2 R$ or V^2 / R or VI	C	1		
		= $(1.25)^2 \times 12 + (10)^2 \times 1.5$ or $(15)^2/12 + (15)^2/1.5$ or 15×11.25	C	1		
		= (18.75 + 150 =) 170 (168.75) W	A	1 [3		
	(iii)	$I_{\rm P}$ = (15/12 =) 1.25 (A) and $I_{\rm Q}$ = (15/1.5 =) 10 (A)	C	1		
		$v_{\rm P}/v_{\rm Q} = I_{\rm P} n A_{\rm Q} e / I_{\rm Q} n A_{\rm P} e \text{ or } (1.25 \times \pi d^2) / (10 \times \pi d^2/4)$	C	1		
		= 0.5	A	1 [3		
7 (a)	(i)	alter distance from vibrator to pulley alter frequency of generator (change tension in string by) changing value of the masses				
		any two	B	2 [2		
	(ii)	points on string have amplitudes varying from maximum to zero/minimum	В	1 [′		
(b)	(i)	60° or $\pi/3$ rad	A	1 [′		
	(ii)	ratio = $[3.4/2.2]^2$	C	1		
		= 2.4 (2.39)	A	1 [2		

		www.dynamicpa			
Page	e 5	Mark Scheme		Paper	
		Cambridge International AS/A Level – May/June 2016	9702	23	
8 (a)	α-1 α-1	particle is 2 protons and 2 neutrons; β^* -particle is positive electron/poparticle has charge +2e; β^* -particle has +e charge particle has mass 4u; β-particle has mass (1/2000)u particle made up of hadrons; β^* -particle a lepton <i>y three</i>	sitron	В3	[3]
(b)	•) ¹p	$\rightarrow {}^{1}_{0}\mathbf{n} + {}^{0}_{1}\beta + {}^{0}_{0}\nu$			
	all	terms correct		M1	
	all	numerical values correct (ignore missing values on v)		A1	[2]
(c)) (i)	1. proton: up, up, down/uud		B1	
		2. neutron: up, down, down/udd		B1	[2]
	(ii)	up quark has charge $+2/3$ (e) and down quark has charge $-1/3$ (e total is $+1(e)$)	B1	[1]