CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9702 PHYSICS

9702/52

Paper 5 (Planning, Analysis and Evaluation), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

		GCE AS/A LEVEL – May/June 2014	9702	52	
Pla	Planning (15 marks)				
Def	fining the pro	blem (3 marks)			
Ρ	<i>r</i> is the indep	endent variable, <i>B</i> is the dependent variable or va	ry <i>r</i> and measur	e <i>B</i> . [1]	
Ρ		nber of turns on the coil(s) <u>constant</u> . ot "same coil".		[1]	
Ρ	Keep the cur	rent in the coil <u>constant</u> .		[1]	
Ме	thods of data	collection (5 marks)			
Μ	needed.	owing flat coils and <u>labelled</u> Hall probe position	ed at X. Minim	um two labels [1]	
		in not be credited.		[']	
Μ		cuit diagram for coil connected to a (<u>d.c.</u>) power su a.c. power supply or incorrect circuit diagrams.	ipply and amme	ter. [1]	
М		probe to voltmeter/c.r.o. ometer but do not allow ammeter.		[1]	
М	Measure diar	meter (radius) with a ruler/vernier calipers. Do not	allow micromete	er. [1]	
М	Calibrate Hal	ll probe with a known magnetic flux density.		[1]	
Ме	thod of analy	sis (2 marks)			
А	Plot a graph	of <i>B</i> against 1/ <i>r</i> [allow lg <i>B</i> against lg <i>r</i> or other va	lid graph]	[1]	
A	$\mu_0 = \frac{\text{gradient}}{0.72NI}$	<u>t</u>		[1]	

Mark Scheme

84

./ 1

0044

www.dynamicpapers.com

Paper

Syllabus

~

Safety considerations (1 mark)

Page 2

1

S Precaution linked to (large) heating of <u>coil</u>, e.g. switch off when not in use to avoid overheating coil; do not touch coil because it is hot. [1]

	www.dynamicpapers.com			
Page 3	Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL – May/June 2014	9702	52	

Additional detail (4 marks)

- D Relevant points might include
- 1 Use large current/large number of turns to create a <u>large magnetic field</u>
- 2 Use rheostat (to adjust current in circuit) (with ammeter) to keep the current constant
- 3 Hall probe at right angles to direction of magnetic field/parallel to coils. Allow adjust to obtain maximum reading
- 4 <u>Reasoned method</u> to keep Hall probe perpendicular <u>to direction of magnetic field</u> or at X (e.g. use of set square, fix to rule, optical bench or equivalent)
- 5 Method to check coils are correctly aligned in parallel
- 6 Repeat experiment with Hall probe reversed and average
- 7 Repeat measurement for *d* (or r) and <u>average</u>
- 8 <u>Relationship is valid</u> if the graph is a straight line passing through the origin for appropriate graph

[if lg-lg then straight line with gradient = -1 (ignore reference to y-intercept)]

Do not allow vague computer methods.

[Total: 15]

	Mark	Expected Answer	Additional Guidance
(a)	A1	gradient = $\frac{-4\pi^2}{g}$ y-intercept = $\frac{4\pi^2}{g}k$	Gradient must be negative. Allow <i>y</i> -intercept = –gradient × <i>k</i>
(b)	T1	(mean) t/s , T/s and T^2/s^2	All column headings to be correct.
	T2	31.8 or 31.81 30.8 or 30.80 29.6 or 29.59 28.7 or 28.73 27.8 or 27.77 26.8 or 26.83	Check all values of T^2 . Allow a mixture of significant figures.
(c) (i)	G1	Six points plotted correctly	Must be within half a small square. Penalise "blobs" Ecf allowed from table.
	U1	Error bars in <i>d</i> plotted correctly	All error bars to be plotted. Must be accurate to less than half a small square.
(c) (ii)	G2	Line of best fit	Lower end of line should pass between (1.60, 27.0) and (1.64,27.0) and upper end of line should pass between (0.44,31.8) and (0.48,31.8).

2 Analysis, conclusions and evaluation (15 marks)

[4]

WWW.	dvi	າລຫ	າເດກລ	ners	com
** ** ** .	M V I	I CALL	nopa		

www.dynamicpapers.com					ers.com
Page 4		Mark Scheme		Syllabus	Paper
		GCE AS/A LEVEL – M	- May/June 2014 9702 52		
	G3	Worst acceptable straight line. Steepest or shallowest possible line that passes through <u>all</u> the error bars.	Line should be clearly Examiner judgement of Lines must cross. Man are plotted.	on worst accepta	able line.
(c) (iii)	C1	Gradient of best fit line	Must be <u>negative</u> . The triangle used should be at least half the length of the drawn line. Check the read offs. Work to half a small square. Do not penalise POT. (Should be about –4.)		
	U2	Uncertainty in gradient	Method of determining absolute uncertainty: difference in worst gradient and gradient.		
(c) (iv)	C2	<i>y</i> -intercept	FOX does not score. Check substitution into $y = mx + c$ Allow ecf from (c)(iii) . (Should be about 33.7.)		
	U3	Uncertainty in <i>y</i> -intercept	Uses worst gradient a Do not check calculat FOX does not score.		
(d) (i)	C3	g between 9.20 and 9.90 given to 2 or 3 s.f. and correct unit (m s ^{-2}) having used gradient.	$g = -\frac{4\pi^2}{m}$; allow N kg ⁻¹		
	C4	<i>k</i> determined correctly with correct unit (m)	$k = c \frac{g}{4\pi^2} = \frac{c}{-m} \ (k \ \mathrm{m})$	ust be positive.)	
(d) (ii)	U4	Percentage uncertainty in g		_	
	U5	Percentage uncertainty in k	Percentage uncertainty in k must be larger than the percentage uncertainty in g .		

[Total: 15]

Uncertainties in Question 2

(c) (iii) Gradient [U2]

Uncertainty = gradient of line of best fit - gradient of worst acceptable line

Uncertainty = $\frac{1}{2}$ (steepest worst line gradient – shallowest worst line gradient)

(c) (iv) [U3]

Uncertainty = y-intercept of line of best fit – y-intercept of worst acceptable line

Uncertainty = $\frac{1}{2}$ (steepest *y*-intercept – shallowest *y*-intercept)

\\/\\/\/	dynamicpapers.co	m
** ** ** .	, , , , , , , , , , , , , , , , , , ,	

	-		
Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9702	52

(d) (ii) [U4]

Percentage uncertainty in
$$g = \frac{\Delta m}{m} \times 100 = \frac{\Delta g}{g} \times 100$$

[U5]

Percentage uncertainty in $k = \frac{\Delta k}{k} \times 100 = \frac{\Delta g}{g} \times 100 + \frac{\Delta c}{c} \times 100$

 $\max k = \frac{\max g \times \max y \text{-intercept}}{4\pi^2} = \frac{\max y \text{-intercept}}{\min \text{ gradient}}$

 $\min k = \frac{\min g \times \min \text{-intercept}}{4\pi^2} = \frac{\min y - \text{intercept}}{\max \text{ gradient}}$