CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

www.dynamicpapers.com

Page 2)	Mark Scheme Syllabus				
ı aye z		•	GCE AS/A LEVEL – May/June 2014	9702	Paper 22		
1 ((a)	pov	ver = ce: kg	energy/time <i>or</i> work done/time ms ⁻² (including from <i>mg</i> in <i>mgh</i> or <i>Fv</i>)	,	B1	
		or k	inetic	c energy $(\frac{1}{2}mv^2)$: kg $(m s^{-1})^2$		B1	
		(dis	tance	e: m and (time) $^{-1}$: s $^{-1}$) and hence power: kg m s $^{-2}$ m s $^{-1}$	$= kg m^2 s^{-3}$	B1	[3]
((b)	A: r	n² an rect s	$m^2 s^{-3}$ d x : m and T : K substitution into $C = (Qx) / tAT$ or equivalent, or with car C : $kg m s^{-3} K^{-1}$	ncellation	C1 C1 C1 A1	[4]
2	(a)		: m/\			C1	
		ρ=	(9.6	$f^2/4$) × $t = 7.67 \times 10^{-7} \text{m}^3$ × 10^{-3})/[π (22.1/2 × 10^{-3}) ² × 2.00 × 10^{-3}] $f^3 = 3 \text{kg m}^{-3}$ (allow 2 or more s.f.)		C1 A1	[3]
((b)	(i)	$\Delta \rho I$	$\rho = \Delta m/m + \Delta t/t + 2\Delta d/d$		C1	
				= 5.21% + 0.50% + 0.905% [or correct fractional un	ncertainties]	C1	
				= 6.6% (6.61%)		A1	[3]
		(ii)	$\rho = \frac{1}{2}$	$12500\pm800\mathrm{kgm^{-3}}$		A1	[1]
3 ((a)	a body/mass/object continues (at rest or) at constant/uniform velocity unless acted on by a <u>resultant</u> force		s B1	[1]		
((b)	(i)		ght <u>vertically</u> down nal/reaction/contact (force) perpendicular/normal <u>to t</u>	he slope	B1 B1	[2]
		(ii)	1.	acceleration = gradient or $(v - u)/t$ or $\Delta v/t$ = $(6.0 - 0.8)/(2.0 - 0.0) = 2.6 \text{ m s}^{-2}$		C1 M1	[2]
			2.	F = ma = 65 × 2.6 = 169 N (allow to 2 or 3 s.f.)		A1	[1]
				weight component seen: $mg \sin \theta$ (218 N) 218 – R = 169 R = 49 N (require 2 s.f.)		C1 C1 A1	[3]

www.dvnamicpapers.com

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9702	22

4 (a) GPE: energy of a <u>mass</u> due to its position in a <u>gravitational field</u> B1 KE: energy (a mass has) due to its motion/speed/velocity B1 [2]

(b) (i) 1. KE =
$$\frac{1}{2} mv^2$$

$$= \frac{1}{2} \times 0.4 \times (30)^2$$
 C1

2.
$$s = 0 + \frac{1}{2} \times 9.81 \times (2.16)^2$$
 or $s = (30 \sin 45^\circ)^2/(2 \times 9.81)$

$$= 22.88 (22.9) m$$
 $= 22.94 (22.9) m$ A1 [2]

3. GPE =
$$mgh$$
 C1
= $0.4 \times 9.81 \times 22.88 = 89.8 (90) J$ A1 [2]

(ii) 1. KE = initial KE – GPE =
$$180 - 90 = 90$$
 A1 [1]

- 2. (horizontal) velocity is not zero/(object) is still moving/answer explained in terms of conservation of energyB1 [1]
- 5 (a) (Young modulus/E =) stress/strain B1 [1]

(b) (i) stress =
$$F/A$$

or = $F/(\pi d^2/4)$
or = $F/(\pi d^2)$ M1
ratio = 4 (or 4:1)

- (ii) E is the same for both wires (as same material) [e.g. $E_P = E_Q$] M1 strain = stress/E ratio = 4 (or 4:1) [must be same as (i)] A1 [2]
- 6 (a) there are no lost volts/energy lost in the batteryor there are no lost volts/energy lost in the internal resistanceB1 [1]
 - (b) the current/I decreases (as R increases) M1 p.d. decreases (as R increases) A1

or

www.dynamicpapers.com

Page 4		ge 4	Mark Scheme	Syllabus	Paper	
ı aye 4		9 0 +	GCE AS/A LEVEL – May/June 2014	9702	22	
	(c)	(i)	current = 2.4 (A) p.d. across AB = 24 – 2.4 × 6 = 9.6 V		C1 M1	
			or			
			total resistance = 10Ω (= $24V/2.4A$) (parallel resistance = 4Ω), p.d. = $24 \times (4/10) = 9.6 \text{ V}$		C1 M1	[2]
		` '	R (AB) = 9.6/2.4 = 4.0 Ω 1/6 + 1/ X = 1/4 [must correctly substitute for R] X = 12 Ω		C1 C1 A1	
			or			
			$I_{R} = 9.6/6.0 = 1.6 \text{ (A)}$ $I_{X} = 2.4 - 1.6 = 0.8 \text{ (A)}$ $X (= 9.6/0.8) = 12 \Omega$		(C1) (C1) (A1)	[3]
		(iii)	power = VI or EI or V^2/R or E^2/R or I^2R		C1	
			= 24×2.4 or $(24)^2/10$ or $(2.4)^2 \times 10$ = 57.6 W (allow 2 or more s.f.)		A1	[2]
	(d)	pow	er decreases		MO	
			<u>f.</u> constant or power = $24 \times \text{current}$, and current decrease <u>m.f.</u> constant or power = 24^2 /resistance, and resistance		A1	[1]
7	(a)	<u>wav</u>	es from the double slit are coherent/constant phase diffe	erence	B1	
		<u>wav</u>	es (from each slit) overlap/superpose/meet (not interfer	·e)	B1	
		maximum/bright fringe where path difference is $n\lambda$ or phase difference is $n360^{\circ}/2\pi n$ rad				
		or minimum/dark fringe where path difference is $(n + \frac{1}{2})\lambda$				
		<i>or</i> p	hase difference is $(2n + 1) 180^{\circ}/(2n + 1)\pi$ rad		B1	[3]
	(b)	$v = i$ $\lambda = i$	$(3 \times 10^8) / 670 \times 10^{12} = 448 \text{ (or 450) (nm)}$		C1 M1	[2]
	(c)		12 / 9 $D\lambda/w) = (2.8 \times 450 \times 10^{-9}) / (12 / 9 \times 10^{-3}) \text{[allow nm,}$ $= 9.5 \times 10^{-4} \text{m} \text{[9.4} \times 10^{-4} \text{m using } \lambda = 448 \text{ nm]}$		C1 C1 A1	[3]
	(d)	•	light has) larger/higher/longer wavelength (must be cor es further apart/larger separation	nparison)	M1 A1	[2]