MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

		www.dynamicpapers									
	Page 2			Mark Scheme	Paper	•					
				GCE AS/A LEVEL – May/June 2013	9702	43					
	Section A										
1	(a)			f space area / volume mass experiences a force		B1 B1	[2]				
	(b)	(i)	force force <i>eithe</i>	asses	M1 M1 A1	[3]					
		(ii)	field ratio		C1 C1 A1	[3]					
	(c)	(i)	or grav eithe M =	er centripetal force = $mR\omega^2$ and $\omega = 2\pi / T$ centripetal force = mv^2 / R and $v = 2\pi R / T$ ritational force provides the centripetal force er $GMm / R^2 = mR\omega^2$ or $GMm / R^2 = mv^2 / R$ $4\pi^2 R^3 / GT^2$ w working to be given in terms of acceleration)		B1 B1 M1 A0	[3]				
		(ii)		= $\{4\pi^2 \times (1.5 \times 10^{11})^3\} / \{6.67 \times 10^{-11} \times (3.16 \times 10^7)^2\}$ = 2.0×10^{30} kg		C1 A1	[2]				
2	(a)	р, \	/ and	e equation pV = constant × T or pV = nRT T explained ues of p , V and T /fixed mass/ n is constant		M1 A1 A1	[3]				
	(b)	(i)		$\times 10^5 \times 2.5 \times 10^3 \times 10^{-6} = n \times 8.31 \times 300$ 0.34 mol		M1 A0	[1]				
		(ii)	3.9 >	otal mass/amount of gas × 10 ⁵ × (2.5 + 1.6) × 10 ³ × 10 ⁻⁶ = (0.34 + 0.20) × 8.31 × 7 360 K	r	C1 A1	[2]				
	(c)	when tap opened gas passed (from cylinder B) to cylinder A work done <u>on</u> gas in cylinder A (and no heating) so internal energy and hence temperature increase					[3]				

Page 3			Mark Scheme	dynamicpape				
	Pa	ges	GCE AS/A LEVEL – May/June 2013	Syllabus 9702	43			
3	(a)	(i) 1.	(i) 1. amplitude = 1.7 cm					
		2.	period = $0.36 \mathrm{cm}$ frequency = $1/0.36$		C1			
			= 2.8 Hz		A1	[2]		
		(ii) <i>a</i> = ac	= $(-)\omega^2 x$ and $\omega = 2\pi/T$ celeration = $(2\pi/0.36)^2 \times 1.7 \times 10^{-2}$ = $5.2 \mathrm{m s^{-2}}$		C1 M1 A0	[2]		
	(b)	graph: <i>(if scal</i> e	straight line, through origin, with negative gradient from (-1.7×10^{-2} , 5.2) to (1.7×10^{-2} , -5.2) e not reasonable, do not allow second mark)		M1 A1	[2]		
	(c)	<i>either</i> kinetic energy = $\frac{1}{2}m\omega^2(x_0^2 - x^2)$ or potential energy = $\frac{1}{2}m\omega^2x^2$ and potential energy = kinetic energy $\frac{1}{2}m\omega^2(x_0 - x^2) = \frac{1}{2} \times \frac{1}{2}m\omega^2x_0^2$ or $\frac{1}{2}m\omega^2x^2 = \frac{1}{2} \times \frac{1}{2}m\omega^2x_0^2$ $x_0^2 = 2x^2$			B1 C1			
		$x = x_0 / = 1.2$	$\sqrt{2} = 1.7 / \sqrt{2}$ cm		A1	[3]		
4	(a)		one moving unit positive charge finity (to the point)		M1 A1	[2]		
	(b)		h) kinetic energy = change in potential energy = qV leading to $v = (2Vq/m)^{\frac{1}{2}}$		B1 B1	[2]		
	(c)	either	$(2.5 \times 10^5)^2 = 2 \times V \times 9.58 \times 10^7$ V = 330 V this is less than 470 V and so 'no'		C1 M1 A1	[3]		
		or	$v = (2 \times 470 \times 9.58 \times 10^7)$ $v = 3.0 \times 10^5 \text{ m s}^{-1}$ this is greater than $2.5 \times 10^5 \text{ m s}^{-1}$ and so 'no'		(C1) (M1) (A1)			
		or	$(2.5 \times 10^5)^2 = 2 \times 470 \times (q/m)$ $(q/m) = 6.6 \times 10^7 \mathrm{C kg^{-1}}$ this is less than $9.58 \times 10^7 \mathrm{C kg^{-1}}$ and so 'no'		(C1) (M1) (A1))		

				www.dynamicpaper							pers.c	Paper		
	Pa	ge 4	ŀ				P							
					GCE AS	A LEVEL	– May	/June 2013		9702		43		
5	(a)	(un (cre	iform eates)	magnet) force p	ic) flux no er unit len	rmal to lon gth of 1 N	g (strai m ^{−1}	ght) wire car	rying a cu	urrent of 1 A		M1 A1	[2]	
	(b)	(i)	flux	density	$= 4\pi \times 10$ $= 6.6 \times 1$	0 ^{−7} × 1.5 × 0 ^{−3} T	10 ³ × 3	.5				C1 A1	[2]	
		(ii)	flux	linkage	= 6.6 × 1 = 3.0 × 1	$0^{-3} \times 28 \times 0^{-3} \text{Wb}$	10 ⁻⁴ ×	160				C1 A1	[2]	
	(c)	(i)	•	,		ortional to r flux (linkag						M1 A1	[2]	
		(ii)	e.m.	f. = (2 = 7	2 × 3.0 × 1 .4 × 10 ^{−3} \	0 ⁻³) / 0.80 /						C1 A1	[2]	
6	(a)	(i)		•		in the core nduced cu						B1 B1	[2]	
		(ii)	eithe or			s in transfo = output po						B1	[1]	
	(b)	eith			oltage acr Itage acro	oss load	= √2 × 1					C1	101	
		or		-	ltage acro ltage acro	oss primary		= 9.0 × √2 = 12.7 × (810	00/300)			A1 (C1)	[2]	
								= 340 V				(A1)		
7	(a)		givin	ng rise to		m. radiation of electro		n the surface	e)			M1 A1	[2]	
		(ii)	E = 1			<i>(</i> - - <i>) ,</i>	10, , , ,	31				C1		
			three	shold fre		= (9.0 × 10 = 1.4 × 10		ð.63 × 10 ^{−34})				A1	[2]	
	(b)	or or		300 nm zinc λ ₀ :	≡ 6.6 × 10) ^{–19} J (and platinum ⁄	600 nm	$\Xi 5.0 \times 10^{14}$ $\Xi 3.3 \times 10^{-15}$ onm (and soc	J)	= 520 nm)		M1 A1	[2]	
	(c)	few	er ph	otons p	a larger en er unit tim emitted pe							M1 M1 A1	[3]	

				w.dynamicpape		
	Page	e 5	Mark Scheme GCE AS/A LEVEL – May/June 2013	Syllabus 9702	Paper 43	•
8			ght) nuclei combine n a more massive nucleus		M1 A1	[2]
	(b) (i		m = (2.01410 u + 1.00728 u) - 3.01605 u = 5.33 × 10 ⁻³ u hergy = $c^2 \times \Delta m$ = 5.33 × 10 ⁻³ × 1.66 × 10 ⁻²⁷ × (3.00 × 10 ⁸) ² = 8.0 × 10 ⁻¹³ J		C1 C1 A1	[3]
	(i		beed/kinetic energy of proton and deuterium must be v that the nuclei can overcome electrostatic repulsion	ery large	B1 B1	[2]
			Section B			
9	(a) (i	i) lig	ht-dependent resistor/LDR		B1	[1]
	(ii	i) s	rain gauge		B1	[1]
	(iii	i) q	uartz/piezo-electric crystal		B1	[1]
	(b) (i	e o	esistance of thermistor decreases as temperature incre tiher $V_{OUT} = V \times R / (R + R_T)$ current increases and $V_{OUT} = IR$ total increases	ses	M1 A1 A1	[3]
	(i	0	ther change in R_T with temperature is non-linear V_{OUT} is not proportional to R_T / change in V_{OUT} we change is non-linear	ith R_{T} is non-linear	M1 A1	[2]
10		-	ness: how well the edges (of structures) are defined st: difference in (degree of) blackening between struct	ures	B1 B1	[2]
	(b) e	- la	cattering of photos in tissue/no use of a collimator/no u rge penumbra on shadow/large area anode/wide bean rge pixel size		5.0	
		(8	ny two sensible suggestions, 1 each)		B2	[2]
	(c) (i		= $I_0 e^{-\mu x}$ ttio = exp(-2.85 × 3.5) / exp(-0.95 × 8.0) = (4.65 × 10 ⁻⁵) / (5.00 × 10 ⁻⁴)		C1 C1	
			= 0.093		A1	[3]
	(i	0	ither large difference (in intensities) r ratio much less than 1.0 o good contrast		M1 A1	[2]
		(8	nswer given in (c)(ii) must be consistent with ratio give	en in (c)(i))		

		www.dynamicpapers						
	Page 6			Mark Scheme	Paper	'		
				43				
11	(a)	(i)		plitude of the carrier wave varies synchrony) with the displacement of the information sig	nal	M1 A1	[2]	
		 e.g. more than one radio station can operate in same region/less interference enables shorter aerial increased range/less power required/less attenuation less distortion 						
				(any two sensible answers, 1 each)		B2	[2]	
	(b)	(i)		uency = 909 kHz elength = $(3.0 \times 10^8) / (909 \times 10^3)$		C1		
				= 330 m		A1	[2]	
		(ii)	ban	dwidth = 18 kHz		A1	[1]	
		(iii)	frea	uency = 9000 Hz		A1	[1]	
		(,					r.1	
12	(a)			ved signal, 28 = 10lg(<i>P</i> / {0.36 × 10 ⁻⁶ }) < 10 ⁻⁴ W		C1 A1	[2]	
	(b)	los	s in fil	bre = $10 \log(\{9.8 \times 10^{-3}\} / \{2.27 \times 10^{-4}\})$ = $16 dB$		C1 A1	[2]	
	(c)	atte	enuati	ion per unit length = $16 / 85$ = 0.19 dB km ⁻¹		A1	[1]	