CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Dece		www.dynamicpapers.com				
	Page 2	2 Mark Scheme Syllabus GCE AS/A LEVEL – May/June 2013 9702		Paper 23			
1	(a) for	$rce: kg m s^{-2}$					
	(b) (i)	I^{2} : A ² <i>l</i> : m x: m K: kg m s ⁻² A ⁻²		C1 A1	[2]		
	(ii)	curve of the correct shape (for inverse proportionality) clearly approaching each axis but never touching the axis		M1 A1	[2]		
	(iii)	curving upwards and through origin		A1	[1]		
2	(a) (i)	1. distance of path / along line AB		B1	[1]		
		 shortest distance between AB / distance in straight line be or displacement from A to B 	tween AB	B1	[1]		
	(ii)	acceleration = rate of change of velocity		A1	[1]		
	(b) (i)	distance = area under line or $(v/2)t$ or $s = (8.8)^2 / (2 \times 9.81)$ = 8.8 / 2 × 0.90 = 3.96 m or $s = 3.95$ m = 4(.0) m		C1 A1	[2]		
	(ii)	acceleration = $(-4.4 - 8.8) / 0.50$ = $(-) 26(.4) \text{ m s}^{-2}$		C1 A1	[2]		
	(c) (i)	the accelerations are constant as straight lines		B1			
		the accelerations are the same as same gradient or no air resistance as acceleration is constant or change of speed in opposite directions (one speeds up one s	slows down)	B1	[2]		
	(ii)	area under the lines represents height or KE at trampoline equals PE at maximum height		B1			
		second area is smaller / velocity after rebound smaller hence	KE less	B1			
		hence less height means loss in potential energy		A0	[2]		
3	(a) (i)	the total momentum of a system (of interacting bodies) remain provided there are no resultant external forces / isolated system		M1 A1	[2]		
	(ii)	elastic: total kinetic energy is conserved, inelastic: loss of kin [allow elastic: relative speed of approach equals relative spee		B1	[1]		

		WWW.	dynamicpapers	s.com	
	Page 3	Mark Scheme	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2013	9702	23	
	(b) (i)	initial mom: $4.2 \times 3.6 - 1.2 \times 1.5$ (= $15.12 - 1.8 = 13.3$) final mom: $4.2 \times v + 1.5 \times 3$ $v = (13.3 - 4.5) / 4.2 = 2.1 \text{ m s}^{-1}$		C1 C1 A1	[3]
	(ii)	initial kinetic energy $= \frac{1}{2} m_A (v_A)^2 + \frac{1}{2} m_B (v_B)^2$ = 27.21 + 1.08 = 28(.28) final kinetic energy $= 9.26 + 6.75 = 16$ initial KE is not the same as final KE hence inelastic <i>provided final KE less than initial KE</i> [allow in terms of relative speeds of approach and separation	on]	M1 M1 A1	[3]
4	(a) (i)	stress = force / cross-sectional area		B1	[1]
	(ii)	strain = extension / <u>original</u> length		B1	[1]
	(b) (i)	$E = \text{stress / strain} E = 0.17 \times 10^{12} \text{stress} = 0.17 \times 10^{12} \times 0.095 / 100 = 1.6(2) \times 10^8 \text{Pa}$		C1 C1 C1 A1	[4]
	(ii)	force = (stress × area) = 1.615 × 10 ⁸ × 0.18 × 10 ⁻⁶ = 29(.1)N		C1 A1	[2]
5		 a) when waves overlap / meet the resultant displacement is the sum of the individual displacements of the waves 			
	(b) (i)	1. phase difference = $180^{\circ} / (n + \frac{1}{2}) 360^{\circ}$ (allow in rad)		B1	[1]
		2. phase difference = $0 / 360^{\circ} / (n360^{\circ})$ (allow in rad)		B1	[1]
	(ii)	$v = f\lambda$ $\lambda = 320 / 400 = 0.80 \mathrm{m}$		C1 A1	[2]
	(iii)	path difference = $7 - 5 = 2$ (m) = 2.5λ		M1	
		hence minimum or maximum if phase change at P is suggested		A1	[2]
6	(a) p.d	= <u>work done / energy transformed</u> (from electrical to other t charge	orms)	B1	[1]
	(b) (i)	maximum 20 V		A1	[1]
	(ii)	minimum = (600 / 1000) × 20 = 12 V		C1 A1	[2]

				www.dy	ynamicpapers.com		
	Page 4			Mark Scheme		Paper	,
				GCE AS/A LEVEL – May/June 2013	9702	23	
	(c) ((i)		of 1.2 kΩ 00 + 1/600 = 1/ <i>R</i> , <i>R</i> = 400 Ω		M1 A1	[2]
	(1	ii)		parallel resistance (R_2 + LDR) is less than R_2 imum) p.d. is reduced		M1 A1	[2]
7	(a) ((i)	nucle outs mos total diam	eus contains 92 protons eus contains 143 neutrons (missing 'nucleus' 1/2) ide / around nucleus 92 electrons t of atom is empty space / mass concentrated in nucleus charge is zero neter of atom ~ 10^{-10} m or size of nucleus ~ 10^{-15} m two of (B1) marks		B1 (B1) (B1) (B1) (B1)	[4]
	(i	ii)		eus has same number / 92 protons ei have 143 and 146 neutrons (missing 'nucleus' 1/2)		B1 B1	[2]
	(b) ((i)	Y = 3 Z = 8			A1 A1	[2]
	(i	ii)	mas	s-energy is conserved in the reaction		B1	
				s on rhs of reaction is less so energy is released ained in terms of $E = mc^2$		B1	[2]