CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

www.dynamicpapers.com

Dago 2)	Mark Scheme	W.uyriairiicpapt		
Page 2		•		Syllabus 9702	Paper 22	
			GCE AS/A LEVEL – May/June 2013	9/02		
1	1 (a) power =		onorgy / timo		C1	
•					C1	
			(force × distance / time) = kg m ² s ⁻² / s kg m ² s ⁻³			[0]
		_	kg III S		A1	[3]
	/ls\ /!\	!4 -		3	04	
	(b) (i)		ts of L^2 : m ² and units of ρ : kg m ⁻³ and units of v^3 : m ³ s ⁻³		C1	
			= $P/L^2 \rho v^3$) hence units of C: kg m ² s ⁻³ m ⁻² kg ⁻¹ m ³ m ⁻³ s ³			
			ny correct statement of component units		M1	ro1
		argu	ment /discussion / cancelling leading to C having no	o units	A1	[3]
	/::\	(1)		2 × 405\	C1	
	(ii)	powe	er available from wind = $3.5 \times 10^5 \times 100 / 55$ (= 6.36 $3.5 \times 10^5 \times 100 / (55 \times 0.931 \times (25)^2 \times 1.3)$	o × 10°)	C1	
			3.5 × 10 × 100 / (55 × 0.931 × (25) × 1.3) 9.4 m s ⁻¹		C1	[0]
		V = S	9.4 m s		A1	[3]
	/:::\	not c	all kinetic energy of wind converted to kinetic energy	, of blades	В1	
	(iii)		ot all kinetic energy of wind converted to kinetic energy of blades enerator / conversion to electrical energy not 100% efficient / heat roduced in generator / bearings etc		ום	
				icient / neat	B1	[2]
			re must be cause of loss and where located)		ы	[4]
		(ti iCi	e must be cause of loss and where located)			
2	(a) force	ce = ra	ate of change of momentum		A1	[1]
	()		3			
	(b) (i)	horiz	zontal line on graph from $t = 0$ to t about 2.0 s $\pm \frac{1}{2}$ s	quare, <i>a</i> > 0	M1	
		horiz	zontal line at 3.5 on graph from 0 to 2s		A1	
		verti	cal line at $t = 2.0 \text{ s}$ to $a = 0$ or sharp step without a li	ne	B1	
		horiz	zontal line from $t = 2$ s to $t = 4$ s with $a = 0$		B1	[4]
	(ii)		ght line and positive gradient		M1	
			ing at (0,0)		A1	
			hing at (2,16.8)		A1	
			zontal line from 16.8		M1	
		from	2.0 to 4.0		A1	[5]
2	(-) the analysis of all the constable (-file 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1					
3			where (all) the weight (of the body)		M1	[0]
	15 0	onsia	ered / seems to act		A1	[2]
	(b) (i)	verti	cal component of T (= $30 \cos 40^\circ$) = $23 \mathrm{N}$		A1	[1]
	(2) (1)	VO. (1)	car component of 7 (co coo to) Zerv		, , ,	[.]
	(ii)	the s	sum of the clockwise moments about a point equals	the sum of the		
	(/	_	clockwise moments (about the same point)		B1	[1]
			, ,			
	(iii)	(mor	ments about A): 23 × 1.2 (27.58)		M1	
	. ,	•	$= 8.5 \times 0.60 + 1.2 \times W$		M1	
		work	king to show $W = 19$ or answer of 18.73 (N)		A1	[3]
	(iv)	(M =	: W / g = 18.73 / 9.81 =) 1.9(09) kg		A1	[1]

www.dynamicpapers.com
Syllabus Paper

	r age 3		Walk Scheme	Syllabus	i apei	
			GCE AS/A LEVEL – May/June 2013	9702	22	
			r equilibrium) resultant force (and moment) = 0 ward force does not equal downward force / horizontal component of <i>T</i>			
	no	not balanced by forces shown				[2]
4		apparatus: cell with particles e.g. smoke (container must be closed) diagram showing suitable arrangement with light illumination and microscope			B1 B1	[2]
	(b) specks / flashes of light in random motion				M1 A1	[2]
	` '	cannot see what is causing smoke to move hence molecules smaller than smoke particles				
	СО	continuous motion of smoke particles implies continuous motion of molecules		(B1)		
	raı	andom motion of particles implies random motion of molecules				
					max. 2	[2]
5	(a) (i)		λ 40 / 50 = 0.8(0) m		C1 A1	[2]
	(ii)		es (travel along string and) reflect at Q / wall / fixed ent and reflected waves interfere / superpose	end	B1 B1	[2]
	(b) (i)		es labelled at P, Q and the two points at zero displaced at the three points of maximum displaced at the three points at zero displaced at the three points of maximum displaced at the three points at zero displaced at zero		B1 B1	[2]
	(ii)	(1.5	ℓ for PQ hence PQ = 0.8 × 1.5) = 1.2 m		A1	[1]
	(iii)		1 / $f = 1/50 = 20 \text{ms}$ is $\frac{1}{4}$ of cycle		C1 A1	
			contal line through PQ drawn on Fig. 5.2		B1	[3]
6	(a) ch	arge =	current × time		B1	[1]
	(b) (i)	P = =	V^2 / R (240) ² / 18 = 3200 W		C1 A1	[2]
	(ii)	$I = \lambda$	// R = 240 / 18 = 13.3 A		A1	[1]
	(iii)	char	ge = It = 13.3 × 2.6 × 10 ⁶ = 3.47 × 10 ⁷ C		C1 A1	[2]
	(iv)	num num	ber of electrons = $3.47 \times 10^7 / 1.6 \times 10^{-19}$ (= 2.17×10^{-19} electrons per second = $2.17 \times 10^{-19} / 2.6 \times 10^{-19}$	10^{26}) $^{3} = 8.35 \times 10^{19}$	C1 A1	[2]

Mark Scheme

Page 3

www.dynamicpapers.com

	Page 4	Mark Scheme	Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2013	9702	22	
7	` , ` ,	206 and <i>X</i> = 82 4 and <i>Z</i> = 2		A1 A1	[2]

(ii) mass-energy is conserved B1 mass on rhs is less because energy is released B1 [2]

(b) not affected by external conditions/factors/environment or two examples temperature and pressure