UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9702 PHYSICS

9702/43 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

				dynamicpap	•	
F	Pa	ge 2	Mark Scheme: Teachers' version Syllabus		Paper 42	
			GCE AS/A LEVEL – May/June 2011	9702	43	
Section	on	Α				
1 (a	a)	region (c	of space) where a particle / body experiences a force		B1	[1]
(k	b)	similarity	$r:$ e.g. force $\propto 1 / r^2$		54	
			potential $\propto 1 / r$		B1	[1]
		differenc	e: e.g. gravitation force (always) attractive electric force attractive or repulsive		B1 B1	[2]
(0	c)	= or F F	atio is $Q_1Q_2 / 4\pi\epsilon_0 m_1m_2G$ $= (1.6 \times 10^{-19})^2 / 4\pi \times 8.85 \times 10^{-12} \times (1.67 \times 10^{-27})^2 \times 6.6$ $= 1.2 \times 10^{36}$ $F_E = 2.30 \times 10^{-28} \times R^{-2}$ (C1) $F_G = 1.86 \times 10^{-64} \times R^{-2}$ (C1) $F_E / F_G = 1.2 \times 10^{36}$ (A1)	7 × 10 ^{−11}	C1 C1 A1	[3]
2 (a	a)		of substance ng same number of particles as in 0.012kg of carbon-12	2	M1 A1	[2]
(k	b)	pV = nR			C1	
		+ (2.3 × = 0.296 + = 0.716 r			C1 C1 A1	[4]
3 (a	a)	so no res	on plates are equal and opposite sultant charge tored because there is charge separation		M1 A1 B1	[3]
(k	b)	(i) capa	acitance = Q / V = (18 × 10 ⁻³) / 10		C1	
			$= 1800 \ \mu F$		A1	[2]
			of area under graph or energy = $\frac{1}{2}CV^2$	(40^2^2)	C1	
		ene	rgy = $2.5 \times 15.7 \times 10^{-3}$ or energy = $\frac{1}{2} \times 1800 \times 10^{-6} \times$ = 39 mJ	(10 ⁻ – 7.5 ⁻)	A1	[2]
(0	c)	p.d. acro	d capacitance of Y & Z = $20 \mu\text{F}$ or total capacitance = ss capacitor X = 8V or p.d. across combination = 12V = $10 \times 10^{-6} \times 8$ or $6.67 \times 10^{-6} \times 12$		C1 C1	
		0	= 10 × 10 ⁻ × 8 <i>or</i> 6.67 × 10 ⁻ × 12 = 80 μC		A1	[3]

	Pa	ige 3		nicpapers.com abus Paper	
	10	ge e	GCE AS/A LEVEL – May/June 2011 970		43
4	+q: 1		+ ΔU : increase in internal energy + q : thermal energy / heat supplied to the system + w : work done on the system		
	(b)	(i)	(thermal) energy required to change the state of a substance per unit mass without any change of temperature	M1 A1 A1	[3]
		(ii)	when evaporating greater change in separation of atoms/molecules greater change in volume identifies each difference correctly with ΔU and w	M1 M1 A1	[3]
5	(a)	(i)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage) / rate of flux cutting	M1 A1	[2]
		(ii)	 moving magnet causes change of flux linkage speed of magnet varies so varying rate of change of flux magnet changes direction of motion (so current changes direction) 	B1 B1 n) B1	[1] [1] [1]
	(b)	•	iod = 0.75s guency = 1.33Hz	C1 A1	[2]
	(c)	gra	ph: smooth correctly shaped curve with peak at <i>f</i> ₀ <i>A</i> never zero	M1 A1	[2]
	(d)	(i)	resonance	B1	[1]
		(ii)	e.g. quartz crystal for timing / production of ultrasound	A1	[1]
6	(a)	(i)	$2\pi f = 380$ frequency = 60 Hz	C1 A1	[2]
		(ii)	$I_{\text{RMS}} \times \sqrt{2} = I_0$ $I_{\text{RMS}} = 9.9 / \sqrt{2}$	C1	
			= 7.0 A	A1	[2]
	(b)	pov R =	ver = $I^2 R$ = 400 / 7.0 ²	C1	
			8.2Ω	A1	[2]

Da	ige 4	Mark Scheme: Teachers' version	dynamicpap Syllabus	Paper 43	
Га	iye 4	GCE AS/A LEVEL – May/June 2011	9702		
7 (a)		gth of wave associated with a particle	0102	M1	
	that is m	ioving		A1	[2]
(b)		rgy of electron = $850 \times 1.6 \times 10^{-19}$ = 1.36×10^{-16} J		M1	
	mor	rgy = $p^2 / 2m$ or $p = mv$ and $E_K = \frac{1}{2}mv^2$ nentum = $\sqrt{(1.36 \times 10^{-16} \times 2 \times 9.11 \times 10^{-31})}$ = 1.6 × 10 ⁻²³ Ns		M1 A0	[2]
	(ii)	relength = $(6.63 \times 10^{-34}) / (1.6 \times 10^{-23})$		C1	
		$= 4.1 \times 10^{-11} \text{ m}$		A1	[2]
(c)	electron incident	or description showing: beam in a vacuum on <u>thin</u> metal target / carbon <u>film</u> ent screen		B1 B1 B1	
	pattern o	of concentric rings observed similar to diffraction pattern observed with visible light		M1 A1	[5]
8 (a)	energy r to infinity	equired to separate nucleons in a <u>nucleus</u> /		M1 A1	[2]
(b)	1u = 1.6 <i>E = mc</i> ²	6 × 10 ⁻²⁷ kg		C1	
	= 1.66	$S \times 10^{-27} \times (3.0 \times 10^8)^2$ $S \times 10^{-10} \text{ J}$		M1	
	= (1.4 = 930	9 × 10 ⁻¹⁰) / (1.6 × 10 ⁻¹³) MeV		M1 A0	[3]
(c)	(i) ∆ <i>m</i>	= 2.0141u – (1.0073 + 1.0087)u = –1.9 × 10 ⁻³ u		C1	
	binc	ling energy = $1.9 \times 10^{-3} \times 930$ = 1.8MeV		A1	[2]
	(ii) ∆ <i>m</i>	= (57 × 1.0087u) + (40 × 1.0073u) – 97.0980u = (–)0.69u		C1	
	bind	ling energy per nucleon = (0.69 × 930) / 97 = 6.61 MeV		C1 A1	[3]

		www.dynamicp			papers.com		
	Page 5	Mark Scheme: Teachers' version	Syllabus	Рар	Paper		
		GCE AS/A LEVEL – May/June 2011	9702	43	1		
Se	ction B						
9		<u>e</u> metal wire shown as a grid d in plastic		B1 B1 B1	[3]		
	(b) (i) gair	n (of amplifier)		B1	[1]		
	V ₁ =	$V_{OUT} = 0$, then $V^+ = V^-$ or $V_1 = V_2$ = (1000/1125) × 4.5 = 4.0 V		C1 C1 A1	[3]		
	=	= (1000 / 1128) × 4.5 = 3.99 V		C1			
	V _{OU}	T = 12 × (3.99 – 4.00) = (-) 0.12 V		A1	[2]		
10		e (uniform) magnetic field ss / rotate about field direction ncy pulse	(1)	B1 B1			
	on relaxatior	nance / nuclei absorb energy n / de-excitation, nuclei emit r.f. pulse	(1)	B1 B1			
	non-uniform allows positi	ed and processed field superposed on uniform field on of resonating nuclei to be determined	(1)	B1 B1			
		cation of detection to be changed l each plus any two extra – max 8)	(1)		[8]		
11	bec e.g. can ban e.g. cov rece	eliable communication ause ion layers vary in height / density not carry all information required idwidth too narrow erage limited eption poor in hilly areas o sensible suggestions, M1 & A1 for each, max	(M1) (A1) (M1) (A1) (M1) (A1) 4)		[4]		
	., .	nust be amplified (greatly) before transmission b gnal would be swamped by <u>downlink</u> signal	ack to Earth	B1 B1	[2]		

					www.dynamicpapers.com			
Page 6		ge 6 Mark Scheme: Teachers' version		Syll	abus	Paper		
				GCE AS/A LEVEL – May/June 2011	97	' 02	43	
12	(a)	(i)	24 =	$/ dB = 10 lg(P_1 / P_2)$ $10 lg(P_1 / {5.6 \times 10^{-19}})$ $1.4 \times 10^{-16} W$			C1 C1 A1	[3]
		(ii)	L = ^	nuation per unit length = 1 / <i>L</i> × 10 lg(<i>P</i> ₁ / <i>P</i> ₂) = 1 / <i>L</i> × 10 lg({3.5 × 10 ⁻³ }/{1.4 × 10 ⁻¹⁶ }) 1 km			C1 C1 A1	[3]
			<i>or</i> atter	nuation = 10lg({3.5 × 10 ⁻³ }/{5.6 × 10 ⁻¹⁹ }) = 158dB	(C1)			
				nuation along fibre = (158 – 24) (158 – 24) / 1.9 = 71 km	(C1) (A1)			
	(b)	less	s attei	nuation (per unit length) / longer uninterrupted	l length of fibre		B1	[1]