UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

www.dynamicpapers.com

Paper

41

В1

A0

[2]

Syllabus

9702

			GCL AS/A LLVLL - May/June 2011 9702	41	
Se	ctior	ı A			
1	(a)	(i)	force proportional to product of masses force inversely proportional to square of separation	B1 B1	[2]
		(ii)	separation much greater than radius / diameter of Sun / planet	B1	[1]
	(b)	(i)	e.g. force or field strength \propto 1 / r^2 potential \propto 1 / r	B1	[1]
		(ii)	e.g. gravitational force (always) attractive electric force attractive or repulsive	B1 B1	[2]
2	(a)		nber of atoms of carbon-12 0.012 kg of carbon-12	M1 A1	[2]
	(b)	sub	= NkT or $pV = nRT$ estitutes temperature as 298 K er $1.1 \times 10^5 \times 6.5 \times 10^{-2} = N \times 1.38 \times 10^{-23} \times 298$	C1 C1	
		or N =	$1.1 \times 10^5 \times 6.5 \times 10^{-2} = n \times 8.31 \times 298$ and $n = N / 6.02 \times 10^{23}$ = 1.7 × 10 ²⁴	C1 A1	[4]
3	(a)	acceleration / force proportional to displacement from a fixed point acceleration / force (always) directed towards that fixed point / in opposite			
		dire	ection to displacement	A1	[2]
	(b)	(i)	$A \rho g \mid m$ is a constant and so acceleration proportional to x negative sign shows acceleration towards a fixed point \mid in opposite direction to displacement	B1 B1	[2]
		(ii)	$\omega^2 = (A\rho g / m)$ $\omega = 2\pi f$	C1 C1	[4]
			$(2 \times \pi \times 1.5)^2 = (\{4.5 \times 10^{-4} \times 1.0 \times 10^3 \times 9.81\} / m)$ $m = 50 \text{ g}$	C1 A1	[4]
4	(a)		rk done in bringing unit positive charge m infinity (to that point)	M1 A1	[2]
	(b)	(i)	field strength is potential gradient	B1	[1]
		(ii)	field strength proportional to force (on particle Q)	B1	

Mark Scheme: Teachers' version

GCE AS/A LEVEL - May/June 2011

Page 2

potential gradient proportional to gradient of (potential energy) graph

so force is proportional to the gradient of the graph

www.dynamicpapers.com

	Page 3	3	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2011	9702	41	
	pot 5.1	ential × 1.6	$5.1 \times 1.6 \times 10^{-19} (J)$ energy = $Q_1 Q_2 / 4\pi \varepsilon_0 r$ $5 \times 10^{-19} = (1.6 \times 10^{-19})^2 / 4\pi \times 8.85 \times 10^{-12} \times r$ 10^{-10} m		C1 C1 C1 A1	[4]
	(d) (i)		k is got out as x decreases pposite sign		M1 A1	[2]
	(ii)		rgy would be doubled lient would be increased		B1 B1	[2]
5	(a) reg	ion (o	of space) where there is a force		M1	
	eith or		n / produced by magnetic pole n / produced by current carrying conductor / moving ch	narge	A1	[2]
	(b) (i)		e on particle is (always) normal to velocity / direction of ed of particle is constant	travel	B1 B1	[2]
	(ii)	mv^2	netic force provides the centripetal force / r = Bqv nv / Bq		B1 M1 A0	[2]
	(c) (i)	dire	ction from 'bottom to top' of diagram		B1	[1]
	(ii)		us proportional to momentum = 5.7 / 7.4		C1	
		= 0.7			A1	[2]
6	(a) (i)	to co	oncentrate the (magnetic) flux / reduce flux losses		B1	[1]
	(ii)		nging flux (in core) induces current in core ents in core give rise to a heating effect		M1 A1	[2]
	(b) (i)		f. induced proportional to of change of (magnetic) flux (linkage)		M1 A1	[2]
	(ii)	e.m.	netic flux in phase with / proportional to e.m.f. / current f. / p.d. across secondary proportional to rate of chang m.f. of supply not in phase with p.d. across secondary	e of flux	M1 M1 A0	[2]
	(c) (i)		came power (transmission), high voltage with low curre low current, less energy losses in transmission cables		B1 B1	[2]
	(ii)	volta	age is easily / efficiently changed		B1	[1]

www.dynamicpapers.com
Svllabus Paper

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2011	9702	41	
7			ve, electron can 'collect' energy continuously ve, electron will always be emitted /		B1	
			will be emitted at all frequencies ufficiently long delay		M1 A1	[3]
	(b) (i	i) eithe or or	er wavelength is longer than threshold wavelength frequency is below the threshold frequency photon energy is less than work function		B1	[1]
	(ii	(6.6	$\lambda = \phi + E_{MAX}$ $3 \times 10^{-34} \times 3.0 \times 10^{8}) / (240 \times 10^{-9}) = \phi + 4.44 \times 10^{-19}$ $3.8 \times 10^{-19} \text{ J} (allow 3.9 \times 10^{-19} \text{ J})$		C1 C1 A1	[3]
	(c) (i		ton energy larger maximum) kinetic energy is larger		M1 A1	[2]
	(ii		er photons (per unit time) maximum) current is smaller		M1 A1	[2]
8	(a) (i	i) Fes	hown near peak		A1	[1]
	(ii	i) Zrs	hown about half-way along plateau		A1	[1]
	(iii	i) Hsl	nown at less than 0.4 of maximum height		A1	[1]
	(b) (i		vy / large nucleus breaks up / splits two nuclei / fragments of approximately equal mass		M1 A1	[2]
	(ii	bind	ing energy of nucleus = $B_E \times A$ ing energy of parent nucleus is less than sum of bindir agments	ng energies	B1 B1	[2]
		01 11	ag		٥.	[-]

www.dynamicpapers.com

Syllabus

9702

Paper 41

			•	
Sec	ction	ı B		
9	(a)	to compare two potentials / voltages output depends upon which is greater	M1 A1	[2]
	(b)	(i) resistance of thermistor = $2.5 \mathrm{k}\Omega$ resistance of X = $2.5 \mathrm{k}\Omega$	C1 A1	[2]
		(ii) at 5 °C / at < 10 °C, $V^- > V^+$ so V_{OUT} is -9 V at 20 °C / at > 10 °C, $V^- < V^+$ and V_{OUT} is +9 V	M1 A1 B1	
		V _{OUT} switches between negative and positive at 10 °C (allow similar scheme if 20 °C treated first)	B1	[4]
10	(a)	product of density (of medium) and speed of sound (in the medium)	B1	[1]
	(b)	α would be nearly equal to 1 either reflected intensity would be nearly equal to incident intensity	M1	
		or coefficient for transmitted intensity = $(1 - \alpha)$ transmitted intensity would be small	M1 A1	[3]
	(c)	(i) $\alpha = (1.7 - 1.3)^2 / (1.7 + 1.3)^2$ = 0.018	C1 A1	[2]
		(ii) attenuation in fat = $\exp(-48 \times 2x \times 10^{-2})$ 0.012 = 0.018 $\exp(-48 \times 2x \times 10^{-2})$ x = 0.42 cm	C1 C1 A1	[3
11	(a)	frequency of carrier wave varies (in synchrony) with the displacement of the information signal	M1 A1	[2]
	(b)	(i) 5.0 V	A1	[1]
		(ii) 640 kHz	A1	[1]
		(iii) 560 kHz	A1	[1]
		(iv) 7000 (condone unit)	A1	[1]
12	(a)	e.g. acts as 'return' for the signal shields inner core from noise / interference / cross-talk (any two sensible answers, 1 each, max 2)	B2	[2]
	(b)	e.g. greater bandwidth less attenuation (per unit length) less noise / interference (any two sonsible answers, 1 each, max 2)	B2	ro:
		(any two sensible answers, 1 each, max 2)	DΖ	[2]
	(c)	attenuation is 2.4 dB attenuation = $10 \lg(P_1/P_2)$ ratio = 1.7	C1 C1 A1	[3]

Mark Scheme: Teachers' version

GCE AS/A LEVEL - May/June 2011

Page 5