UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions)

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2			Mark Scheme: Teachers' version Syllabus	Pape	er
			GCE AS/A LEVEL – May/June 2010 9702	22	
(a)) m	icrc	meter/screw gauge/digital callipers	B1	[1
(b)) (i)	ook/check for zero error	B1	[
	/:				
	(I	i) i 2	ake several readingsaround the circumference/along the wire	M1 A1	[2
(a)	co st	onst raig	nitial speed is zero ant acceleration ht line motion <i>two, one mark each</i>)	B2	[2
(b)) (i) s	$s = \frac{1}{2}a t^2$ 0.79 = $\frac{1}{2} \times 9.8 \times t^2$	C1	
			= 0.40 s allow 1 SF or greater	A1	
			2 or 3 SF answer	A1	[
	(i	i) c	listance travelled by end of time interval = 90 cm $0.90 = \frac{1}{2} \times 9.8 \times t^2$	C1	
			= 0.43 s allow 2 SF or greater	C1	
			ime interval = 0.03 s	A1	[
(c)			esistance) means ball's speed/acceleration is less	M1	
	le	ngt	h of image is shorter	A1	[
(a)) (i) f	orce is rate of change of momentum	. B1	[
	(i	i) f	orce on body A is equal in magnitude to force on body B (from A)	M1	
			orces are in opposite directionsorces are of the same kind		Γ
(b)) ($F_{\rm A} = -F_{\rm B}$	B1	[
		2	$t_{\rm A} = t_{\rm B}$	B1	[
	(i	i) /	$\Delta p = F_{\rm A} t_{\rm A} = -F_{\rm B} t_{\rm B} \dots \qquad \dots$	B1	[
(c)	fir	nalı	n: momentum change occurs at same times for both spheres momentum of sphere B is to the right	B1 M1 A1	[
(a)	a ne	npli eigh	no energy transfer itude varies along its length/nodes <u>and</u> antinodes ibouring points (in inter-nodal loop) vibrate in phase, etc. <i>two, 1 mark each to max 2</i>	R2	

Page 3				WWW. Mark Scheme: Teachers' version	dynamicpap	Ders.com Paper			
	Pa	je s		Mark Scheme: Teachers' versionSyllabusGCE AS/A LEVEL – May/June 20109702		Paper 22			
(1	b)	.,	$\lambda = 0$ node antir	(330 × 10 ²)/550 50 cm e labelled at piston node labelled at open end of tube tional node and antinode in correct positions along tub		M1 A0 B1 B1 B1 B1	[1]		
(4		λ= frec	1.8 n juenc	t frequency, length = $\lambda/4$ n sy = 330/1.8		C1 C1 A1	[3]		
5 (á	a)	.,	data You = 1. This	ng modulus = stress/strain chosen using point in linear region of graph ng modulus = (2.1 × 10 ⁸)/(1.9 × 10 ⁻³) 1 × 10 ¹¹ Pa mark was removed from the assessment, owing to a ponsistency in the printed question paper.		C1 M1 A1	[3]		
(1	-	whe this	en rul ener	ween lines represents energy/area under curve repres ober is stretched and then released/two areas are diffe gy seen as thermal energy/heating/difference represe as heat	rentnts energy	M1 A1 A1	[3]		
6 (a	a)	<i>eith</i> red	<i>er P</i> uctior	$\infty V^{2} \text{ or } P = V^{2}/R$ n = $(230^{2} - 220^{2})/230^{2}$ = 8.5 %		C1 A1	[2]		
(1	b)	.,		D)A		A1 A1	[1] [1]		
(0	C)			ect plots to within ± 1 mm		B1	[1]		
			allov V =	<i>v</i> ± 0.005A) IR		B1 C1	[1]		
(4	-	curi resi or c	= uit ac rent in stanc surrer	0.6(0)V ets as a potential divider/current divides/current in AC r n BC the between A and C not equal to resistance between C of in wire AC × R is not equal to current in wire BC × R atements	not the same as and B	A1 B1 B1 B1	[2]		

			dynamicpap	pers.com			
	Pa	ge 4		Mark Scheme: Teachers' version	Syllabus	Syllabus Paper	
				GCE AS/A LEVEL – May/June 2010	9702	22	
7	(a)	(i)	eithe or	er helium <u>nucleus</u> contains 2 protons and 2 neutrons		B1	[1]
		(ii)	spee caus posi	e.g. range is a few cm in air/sheet of <u>thin</u> paper speed up to 0.1 <i>c</i> causes dense ionisation in air positively charged or deflected in magnetic or electric fields (<i>any two, 1 each to max 2</i>)			
	(b)	(i)		$\frac{1}{2}p \ or \ \frac{1}{1}H$		B1 B1	[2]
							[~]
		(ii)	1	initially, α -particle must have some kinetic energy		B1	[1]
		(ii)		1.1 MeV = $1.1 \times 1.6 \times 10^{-13} = 1.76 \times 10^{-13}$ J $E_{\rm K} = \frac{1}{2}mv^2$ 1.76 × $10^{-13} = \frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^2$ $v = 7.3 \times 10^6$ m s ⁻¹ use of 1.67 × 10^{-27} kg for mass is a maximum of 3/4		C1 C1 C1 A1	[4]