UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9702 PHYSICS

9702/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9702	04

Section A

- 1 (a) force per unit mass (ratio idea essential) B1 [1]
 - (b) $g = GM/R^2$ C1 $8.6 \times (0.6 \times 10^7)^2 = M \times 6.67 \times 10^{-11}$ C1 $M = 4.6 \times 10^{24} \text{kg}$ A1 [3]
 - (c) (i) either potential decreases as distance from planet decreases or potential zero at infinity and X is closer to zero or potential α –1/r and Y more negative M1 so point Y is closer to planet. A1 [2]
 - (ii) idea of $\Delta \phi = \frac{1}{2}v^2$ C1 $(6.8 - 5.3) \times 10^7 = \frac{1}{2}v^2$ $v = 5.5 \times 10^3 \, \text{ms}^{-1}$ A1 [2]
- 2 (a) either the half-life of the source is very long
 or decay constant is very small
 or half-life >> 40 days
 or decay constant << 0.02 day⁻¹
 B1 [1]
- (a) increasing separation of molecules / breaking bonds between molecules (allow atoms/molecules, overcome forces)
 doing work against atmosphere (during expansion)
 B1 [2]
 - (b) (i) 1 either bubbles produced at a constant rate / mass evaporates/lost at constant rate or find mass loss more than once and this rate should be constant or temperature of liquid remains constant B1 [1]

 2 to allow/cancel out/eliminate/compensate for heat losses (to atmosphere) B1 [1] (do not allow 'prevent'/'stop')
 - (ii) use of power × time = mass × specific latent heat $(70-50) \times 5 \times 60 = (13.6-6.5) \times L$ C1 $L = 845 \text{ J g}^{-1}$ A1 [3]

www.dynamicpapers.com Syllabus

Paper

L	raye 3			Mark Scheme. Teachers Version	Syllabus	Paper	
			_	GCE A/AS LEVEL – May/June 2009	9702	04	
4	(a)	(i)	(θ =) ω t (allow any subject if all terms given)		B1	[1]
		(ii)	(SQ	=) $r \sin \omega t$ (allow any subject if all terms given)		B1	[1]
	(b)			e solution of the equation $a = -\omega^2 x$ x is the (defining) equation of s.h.m.		M1 A1	[2]
	(c)	(i)		∞ / 2π 4.7 / 2π		C1	
			= (0.75 Hz		A1	[2]
		(ii)		$r\omega$ (r must be identified) 4.7 × 12		C1	
				56 cm s ⁻¹		A1	[2]
5	(a)			of charge (on body) and its potential not allow reference to plates of a capacitor)		B1	[1]
				ential at surface of sphere =) $V = Q / 4\pi \varepsilon_0 r$ $Q / V = 4\pi \varepsilon_0 r$		M1 A0	[1]
	(b)	(i)	C = =	$4 \times \pi \times 8.85 \times 10^{-12} \times 0.36$ 4.0×10^{-11} F (allow 1 s.f.)		A1	[1]
		(ii)	=	CV $4.0 \times 10^{-11} \times 7.0 \times 10^{5}$ 2.8×10^{-5} C		A1	[1]
	(c)	plastic is an insulator / not a conductor / has no free electrons charges do not move (on an insulator)			B1 B1		
		eithe or		so no single value for the potential charge cannot be considered to be at centre		B1	[3]
	(d)	eithe ener	rgy	nergy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and $C = Q/V$ = $\frac{1}{2} \times 4 \times 10^{-11} \times \{(7.0 \times 10^5)^2 - (2.5 \times 10^5)^2)\}$ = 8.6 J		C1 C1 A1	[3]

Mark Scheme: Teachers' version

Page 3

	Dago 4	Mark Scheme: Teachers' version	Syllabus		. 7
	Page 4	GCE A/AS LEVEL – May/June 2009	9702	Paper 04	
6	(uniform	nagnetic flux density / magnetic field strength) <u>field</u> normal to wire carrying current of 1 A rce (per unit length) of 1 N m ⁻¹		B1 M1 A1	[3]
	forc	e on magnet / balance is downwards (so by Newton's e on wire is upwards e P is a north pole	third law)	B1 M1 A1	[3]
	2.3	BIL and $F = mg$ (g missing, then 0/3 in (ii)) × $10^{-3} \times 9.8 = B \times 2.6 \times 4.4 \times 10^{-2}$ (g = 10, loses this 0.20 T	mark)	C1 C1 A1	[3]
	` '	for maximum current = $2.3 \times \sqrt{2}$ tation = $2 \times 2.3 \times \sqrt{2}$		C1	
	lolai vari	= 6.5 g		A1	[2]
7	push <u>known</u> observe curr (induced) fie	with meter (do not allow inclusion of a cell) pole into coil ent direction (not reading) ld / field from coil repels magnet es rule to determine direction of magnetic field in coil		B1 B1 B1 B1	
	or reve	ersing magnet direction gives opposite deflection on magnetic field in collaboration magnetic		B1 B1	[6]
8	if exposu photon h	eory predicts any frequency would give rise to emission are time is sufficiently long as (specific value of) energy dependent on frequency in if energy greater than threshold / work function /		M1 A1 M1	
		from surface	chergy to remov	A1	[4]
	of electro	s packet/quantum of energy omagnetic radiation energy = h × frequency		M1 A1 B1	[3]
	wavelen	article has an (associated) wavelength gth = h/p is the momentum (of the particle)		B1 M1 A1	[3]
9	(a) (i) ΔN	$^{\prime}$ Δt (ignore any sign)		B1	[1]
	(ii) ∆ <i>N</i> /	N (ignore any sign)		B1	[1]
	$A = A_0$ 0.92 =	nust decay by 8% exp($-\ln 2 t / T_{\frac{1}{2}}$) or $A / A_0 = 1 / (2^{t/T})$ exp($-\ln 2 \times t / 5.27$) or $0.92 = 1 / (2^{t/5.27})$ 634 years		C1 C1 C1	
	= 230 (allow 2	os4 years 0 days marks for A/ $A_0 = 0.08$, answer 7010 days mark for A/ $A_0 = 0.12$, answer 5880 days)		A1	[4]

A1

[3]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9702	04

Section B

10	(a)	. , .	at is added to /returned to / mixed with the input se with the input / fed to inverting input	B1 B1	[2]
	(b)	$25 = 1 + (120 / R) = 5 k\Omega$	R)	C1 A1	[2]
	(c)	(i) −2 V		A1	[1]
		(ii) 9∨		A1	[1]
11	(a)	signal processed time between trar (information abou	daries / boundary ed (at surface) by transducer and displayed (1) asmission and receipt of pulse gives t) depth of boundary (1) gives information as to nature of boundary (1)	В4	[4]
	(b)	=	$(Z_2 - Z_1)^2 / (Z_2 + Z_1)^2$ $(6.3 - 1.7)^2 / (6.3 + 1.7)^2$ 0.33 (unit quoted, then -1)	C1 A1	[2]
		=	$\exp(-\mu x)$ $\exp(-23 \times 4.1 \times 10^{-2})$ 0.39	C1 A1	[2]
	(=	$0.33 \times 0.39^2 \times I$ 0.050 I e.c.f. from (i) and (ii) if these answers are greater than 1)	C1 A1	[2]
12	(a)	loss / reduction in	power / energy / voltage/ amplitude (of the signal)	В1	[1]
	(b)	(i) attenuation =	= 125 × 7 = 875 dB	A1	[1]
		(ii) 20 amplifiers gain = 20 ×	43 = 860 dB	A1	[1]
	(c)	gain = $10 \lg(P_1/F_1)$ overall gain = -15 = $10 \lg(P_1/F_1)$	5 dB / attenuation is 15 dB	C1 C1	

 $-15 = 10 \lg(P / 450)$ P = 14 mW

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9702	04

13	(a)	switch; tuning cct; (r.f.) amplifier; demodulator; serial-to-parallel converter; DAC; (a.f.) amplifier mark as 2 sets of 2 marks each		
		5 blocks identified correctly	B2	
		(each error or omission, deduct 1 mark) 5 blocks in correct order (4 or 3 blocks in correct order, allow 1 mark)	B2	[4]
	(b)	phone transmits signal (to identify itself) signal received by (several) base stations (1) transferred to cellular exchange computer selects base station with strongest signal assigns a (carrier) frequency (any four, 1 each, max 4) (1)	B4	[4]