UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2008 question paper

9702 PHYSICS

9702/02

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

www.dynamicpapers.com
Syllabus Paper
9702 02

		00174710 11111		
1	(a) a	low anything in range 20 Hz → 20 kHz	B1	[1]
	(b) a	low anything in range 10 nm → 400 nm	B1	[1]
	(c) a	low anything in range 10 g \rightarrow 100 g	B1	[1]
	(d) a	low anything in range 0.1 kg m ⁻³ \rightarrow 10 kg m ⁻³	B1	[1]
2	(a) (i) k is the reciprocal of the gradient of the graph $k = \{32 / (4 \times 10^{-2}) = \} 800 \text{ N m}^{-1}$	C1 A1	[2]
	(ii	either energy = average force × extension or $\frac{1}{2}kx^2$ or area under graph line energy = $\frac{1}{2}$ × 800 × $(3.5 \times 10^{-2})^2$ or $\frac{1}{2}$ × 28 × 3.5 × 10 ⁻² energy = 0.49 J	C1 M1 A0	[2]
	(b) (i	momentum before cutting thread = momentum after $0 = 2400 \times V - 800 \times V$ $v / V = 3.0$	C1 M1 A0	[2]
	(ii	energy stored in spring = kinetic energy of trolleys $0.49 = \frac{1}{2} \times 2.4 \times (\frac{1}{3}v)^2 + \frac{1}{2} \times 0.8 \times v^2$	C1 C1	
		$v = 0.96 \text{ m s}^{-1}$ (if only one trolley considered, or masses combined, allow max 1 mark)	A1	[3]
3	(a) (i) $v^2 = 2as$ $1.2^2 = 2 \times a \times 1.9$ $a = 0.38 \text{ m s}^{-2}$	M1 A1	[2]
	(ii) F = ma = 42 × 0.38 = 16 N	M1 A0	[1]
	(b) p	ower = Fv = 16 × 1.2	C1	
		= 10 \ 1.2 = 19 W	A1	[2]
	(c) (i) component = 42 × 9.8 × sin2.8 = 20.1 N	C1 A1	[2]
	(ii) accelerating force = $20.1 - 16 = 4.1 \text{ N}$ acceleration of trolley = $4.1 / 42 = 0.098 \text{ m s}^{-2}$	C1 C1	
		$s = \frac{1}{2}at^2$ 3.5 = $\frac{1}{2} \times 0.098 \times t^2$ t = 8.5 s	C1 A1	[4]

Mark Scheme GCE A/AS LEVEL – May/June 2008

Page 2

www.dynamicpapers.com
Syllabus Paper

-			oynabae ozoo	. apo.	
		GCE A/AS LEVEL – May/June 2008	9702	02	
	(d) either or or (answer	allows plenty of time to stop runaway trolley speed of trolley increases gradually trolley will travel faster must be unambiguous when read in conjunction with q	uestion)	B1	[1]
4	2. 3.	stress = force / (cross-sectional) area strain = extension / <u>original</u> length Young modulus = stress / strain os must be clear in each answer)		B1 B1 B1	[1] [1] [1]
	(ii) eithe or or	er fluids cannot be deformed in one direction / canno fluids can only have volume change no fixed shape	t be stretched	В1	[1]
	(b) either	unless Δp is very large or 2.2×10^9 is a large number ΔV is very small or $\Delta V/V$ is very small, (so 'incompre		M1 A1	[2]
	h = 9.5	$0^{5} = h \times 1.08 \times 10^{3} \times 9.81$ 3 m		C1 C1	
		0.47 / 10 or 0.47 / 9.53 4.7% or 4.9% or 5%		A1	[3]
5	(a) (i) freq	uency: number of oscillations <u>per</u> unit time of the source / of a point on the wave		M1 A1	[2]
	(ii) spe	ed: speed at which energy is transferred / speed	of wave <u>front</u>	B1	[1]
	(b) (i) doe	s not transfer energy (along the wave)		B1	[1]
	(ii) posi	tion (along wave) where amplitude of vibration is a max	kimum	B1	[1]
	(iii) all ti	nree positions marked		B1	[1]
	$v = f\lambda$	gth = 2 × 17.8 = 35.6 cm 5 × 0.356		C1 C1	
	$= 44.5^2 =$	5 × 0.336 5 m s ⁻¹ 4.00 / <i>m</i> 0 × 10 ⁻³ kg m ⁻¹		C1 C1 A1	[5]

Mark Scheme

Page 3

www.dynamicpapers.com

B2

[4]

Page 4	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2008	9702	02

6 (a) either
$$P = VI$$
 and $V = IR$ or $P = V^2 / R$ C1 resistance = 38.4 Ω

7 (a)
$$\alpha$$
-particle: either helium nucleus or contains 2 protons + 2 neutrons or 4_2 He B1 β -particle: either electron or $^0_-$ 1e B1 α speed < β speed (1) α discrete values of speed/energy, β continuous spectrum (1) either α ionising power >> β ionising power or α range << β range (1) α positive, β negative (only if first two B marks not scored) (1) α mass > β mass (only if first two B marks not scored) (1) (any two sensible pairs of statements relevant to differences,

– do not allow statements relevant to only α or β , 1 each, max 2)

(b) (i)
$$^{236}_{92}U \rightarrow ^{232}_{90}Th$$
 M1 + $^{4}_{2}He$ A1 [2]

(ii) 1. correct position for U at
$$Z = 92$$
, $N = 145$ B1
2. correct position for Np relative to U i.e. $Z + 1$ and $N - 1$ B1 [2]