UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2007 question paper

9702 PHYSICS

9702/04

Paper 4 (A2 Structures Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

P		ade 3		Mark Scheme	namicpapo Syllabus		
	Page 2		<u> </u>	GCE A/AS LEVEL – May/June 2007	9702	Paper 04	
I	(a)	(reg	gion c	of space) where a <u>mass</u> experiences a force		B1	[1]
	(b)	(i)	pote	ential energy = (–) <i>GMm / x</i>		C1	
	()	()	ΔE_{P}	= GMm/2R – GMm/3R Mm/6R		M1 A0	[2
		(ii)		$\frac{1}{2}m(7600^2-7320^2)$		M1	
			= (2	$(.09 \times 10^6)m$		A0	[1
	(c)	(i)		$10^{\circ} \times 10^{6} = (6.67 \times 10^{-11} \text{ M})/(6 \times 3.4 \times 10^{6})$		C1	
			M =	$6.39 \times 10^{23} \text{ kg}$		A1	[2]
		(ii)		no energy dissipated due to friction with <u>atmosphere/air</u> et is outside atmosphere			
			not i	nfluenced by another planet etc.		B1	[1]
	(a)	•		ng,) bonds between molecules are broken/weakened			
				ules further apart/are able to slide over one another nergy unchanged so no temperature change		B1 B1	
				energy increased/changed so energy required		B1	[3]
	(b)			energy/heat required to convert unit mass of solid to liqu	id	M1	
		with	n no c	change in temperature/ at its normal boiling point		A1	[2]
	(c)	(i)		mal energy lost by water = 0.16 × 4.2 x 100 .2 kJ		C1	
				$L = 0.205 \times L$		C1	
				328 kJ kg ⁻¹		A1	[3]
		(ii)		e energy (than calculated) melts ice		M1	10
			so, (calculated) L is lower than the accepted value		A1	[2]
	(a)			ngth = potential gradient		M1	10
		cor	rect s	ign OR directions discussed		A1	[2]
	(b)			1.2 cm ² \pm 0.4 cm ² /e \pm 0.4 cm ² but within \pm 0.8 cm ² , allow 1 mark)		C2	
		•		represents $(1.0 \times 10^{-2} \times 2.5 \times 10^{3} =) 25 \text{ V}$		C1	
				difference = 530 V		A1	[4
	(c)		$nv^2 = 0$.	
				$\times 10^{-31} \times v^2 = 1.6 \times 10^{-19} \times 530 \times 10^7 \text{ ms}^{-1}$		C1 A1	[2]
	(d)	(i)	d = (n		B1	[1]
	(~)						L'.
		(ii)		eleration decreases then increases e quantitative analysis (e.g. minimum at 4.0 cm)		B1 B1	[2]
			(any	v suggestion that acceleration becomes zero or that there eleration scores 0/2)	e is a		L

Page 3			v.dynamicpape		
	Page	a 3Mark SchemeSyllabusGCE A/AS LEVEL – May/June 20079702m.s. output = $9/\sqrt{2}$ or peak input = $230\sqrt{2}$ $N_S/N_P = V_S/V_P$ $N_S = 138 \rightarrow 140$ turns			
4	Ν _s /				
	(b) (i)	giving correct output polarity (all 'point to left')	ity	M1 A1	[2]
	(ii)	capacitor shown in parallel with R		B1	[1]
	(c) (i)	time t_1 to time t_2		B1	[1]
	(ii)	sketch: same peak values ripple reduced and reasonable shape		M1 A1	[2]
5	(a) (i)	packet/discrete quantity/quantum (of energy) of e.m. radia	ation	B1	[1]
	(ii)	either $E = (6.63 \times 10^{-34} \times 3 \times 10^8)/(350 \times 10^{-9})$ or $E = (6.63 \times 10^{-34} \times 8.57 \times 10^{14})$ $E = 5.68 \times 10^{-19} \text{ J}$		M1 A0	[1]
	(iii)	0.5		B1	[1]
	(b) (i)	to cause emission of electron from surface		M1	[0]
	(ii)	<i>either</i> with zero k.e <i>or</i> photon energy is minimum correct conversion $eV \rightarrow J$ or $J \rightarrow eV$ seen once photon energy must be greater than work function 350 nm wavelength and potassium metal		A1 B1 C1 A1	[2] [3]
6	of	bability of decay a nucleus per unit time ow 1 mark for $A = \lambda N$, with symbols explained)		M1 A1	[2]
	(b) (i)	$\lambda = \ln 2/(28 \times 365 \times 24 \times 3600)$ = 7.85 × 10 ⁻¹⁰ s ⁻¹		C1 A1	[2]
	(ii)	$\begin{array}{l} A = (-)\lambda N \\ N = (6.4 \times 10^9) / (7.85 \times 10^{-10}) \\ = 8.15 \times 10^{18} \\ \text{mass} = (8.15 \times 10^{18} \times 90) / (6.02 \times 10^{23}) \text{ (e.c.f. for value of } \\ = 1.22 \times 10^{-3} \text{ g} \end{array}$	N)	C1 C1 C1 A1	[4]
	(iii)	volume = $(1.22 \times 10^{-3}/2.54 =) 4.8 \times 10^{-4} \text{ cm}^{-3}$		A1	[1]
	or	<i>er</i> very small volume of Strontium-90 has high activity dust can be highly radioactive athing in dust presents health hazard		B1 B1	[2]

	www.dynamicpapers.com							
	Page	4	Mark Scheme	Syllabus	Paper			
			GCE A/AS LEVEL – May/June 2007		04			
7	(a) (i	as n e.m. caus enei	llations are <u>damped</u> /amplitude decreases nagnet moves, flux is cut by coil .f./current is induced in the coil sing energy loss in load OR force on magnet rgy is derived from oscillations of magnet		B1 B1 B1 B1 B1	[5]		
		UK	force opposes motion of magnet		Ы	[5]		
	(ii)		0.60 s = $2\pi/T$) = 10.5 rad s ⁻¹		C1 A1	[2]		
			sinusoidal wave with period unchanged or slightly smalle tial displacement, less damping	r	M1 A1	[2]		
	(c) (i	•	ch: general shape – peaked curve k at ω_0 and amplitude never zero		M1 A1	[2]		
	(ii)) <u>resc</u>	pnance		B1	[1]		
	(iii)	avoi	ful: e.g. child on swing, microwave oven heating id: e.g. vibrating panels, vibrating bridges credit, stated example must be put in context)		B1 B1	[2]		
Section B								
8	(a) e.	infin zerc infin infin	ite (voltage) gain ite input impedance o output impedance ite bandwidth ite slew rate <i>v three, 1 each</i>)		В3	[3]		
	(b) (i) nega	ative (feedback)		B1	[1]		
	(iij) 1 ga	ain (= 5.8/0.069) = 84		B1	[1]		
	(ii)		ain = 1 + 120/ <i>X</i>		C1			
			= 1 + 120/ <i>X</i> 1.45 kΩ		A1	[2]		
		~ -	1.40 1.22		A1	[2]		
	(iii)) gain	increases OR bandwidth reduced OR output increases		B1	[1]		

			www.dynamicpapers.com					
	Page 5		Mark Scheme	Syllabus	Paper	•		
			GCE A/AS LEVEL – May/June 2007	9702	04			
9	(a)	different giving 'sl	am directed through body onto detector (plate) tissues absorb/attenuate beam by different amounts hadow' image of structures er detail e.g. comment re sharpness or contrast		B1 B1 B1 B1	[4]		
	(b)	CT scan these bu series of so that 3 image ca	age is flat OR 2-dimensional (1) takes many images of a slice at different angles (1) ild up an image of a slice through the body (1) images of slices is made (1) D image can be built up (1) an then be rotated (1) for each point, max 5		В5	[5]		
10	(a)	graph dr	values of 2, 5, 10, 15 and 4 (– <i>1 each error</i>) awn as a series of steps curring at correct times		B2 M1 A1	[4]		
	(b)		more frequently number of bits		B1 B1	[2]		
11	(a)	both amp	or and oscillator identified plifiers identified correctly d parallel-to serial converter identified		B1 B1 B1	[3]		
	(b)	monitors switches	er at cellular exchange s signal strength s call from one base station to another ain maximum signal strength		B1 B1 B1 B1	[4]		