## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

## MARK SCHEME for the May/June 2007 question paper

## 9702 PHYSICS

9702/02

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



|   |     |                                                                |                                                                                                                                                     | www.c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ww.dynamicpapers.com |                                        |     |  |
|---|-----|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------|-----|--|
|   | Pa  | ge 2                                                           | 2                                                                                                                                                   | Mark Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Syllabus             | Paper                                  |     |  |
|   |     |                                                                |                                                                                                                                                     | GCE A/AS LEVEL – May/June 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9702                 | 2                                      |     |  |
| 1 | (a) | (i)                                                            | <ul> <li>all positions (accept 20, 40, 60, 80) marked to within ±5° positions are 40°, 70°, 90° and 102° (-1 for each error or omission)</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | B2                                     |     |  |
|   |     | (ii)                                                           | allov                                                                                                                                               | w 107° → 113°                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | B1                                     | [3] |  |
|   | (b) |                                                                |                                                                                                                                                     | re sensitive at <u>low</u> volumes<br>allow reference to 'accuracy')                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | B1                                     | [1] |  |
| 2 | (a) | ford                                                           | ce <u>pei</u>                                                                                                                                       | <u>r unit positive</u> charge (on a small test charge)                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | B1                                     | [1] |  |
|   | (b) | field                                                          | d stre                                                                                                                                              | ngth = $(210/\{1.5 \times 10^{-2}\}) = 1.4 \times 10^4 \text{ N C}^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                |                      | A1                                     | [1] |  |
|   | (c) | (i)                                                            |                                                                                                                                                     | eleration = $Eq / m$<br>= (1.4 × 10 <sup>4</sup> × 1.6 × 10 <sup>-19</sup> ) / (9.1 × 10 <sup>-31</sup> )<br>= 2.5 × 10 <sup>15</sup> m s <sup>-2</sup> (2.46 × 10 <sup>15</sup> )<br>ards positive plate / upwards (and normal to plate)                                                                                                                                                                                                                                               |                      | C1<br>C1<br>A1<br>B1                   | [4] |  |
|   |     | (ii)                                                           | time                                                                                                                                                | $s = 2.4 \times 10^{-9} s$                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | A1                                     | [1] |  |
|   | (d) | = ½<br>= 7<br>(0.7<br><i>i.e.</i><br>or<br><i>t</i> is<br>(2.4 | 2 × 2.4<br>7.1 ×<br>71 cm<br><i>valic</i><br>0.<br>1 ms ≤                                                                                           | ertical displacement after acceleration for $2.4 \times 10^{-9}$ s<br>$46 \times 10^{15} \times (2.4 \times 10^{-9})^2$<br>$10^{-3}$ m<br>a < 0.75 cm and) so will pass between plates<br><i>a conclusion based on a numerical value</i><br>$75 \times 10^{-2} = \frac{1}{2} \times 2.46 \times 10^{15} \times t^2$<br>to travel 'half-way across' plates = $2.47 \times 10^{-9}$ s<br>$\approx 2.47$ ns) so will pass between plates<br><i>a conclusion based on a numerical value</i> |                      | C1<br>A1<br>A1<br>(C1)<br>(A1)<br>(A1) | [3] |  |
| 3 | (a) |                                                                |                                                                                                                                                     | olume (ratio idea essential)                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | B1                                     | [1] |  |
|   | (b) | (i)                                                            | mas                                                                                                                                                 | $s = Ah\rho$                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | B1                                     | [1] |  |
|   |     | (ii)                                                           | weig                                                                                                                                                | ssure = force/area<br>ght (of liquid)/force (on base) = $Ah\rho g$<br>ssure = $h\rho g$                                                                                                                                                                                                                                                                                                                                                                                                 |                      | B1<br>B1<br>A0                         | [2] |  |
|   | (c) | (i)                                                            | ratio                                                                                                                                               | 9 = 1600 or 1600:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      | A1                                     | [1] |  |
|   |     | (ii)                                                           | ratio                                                                                                                                               | $p = {}^{3}\sqrt{1600}$<br>= 11.7 (allow 12)                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | C1<br>A1                               | [2] |  |

| _ |     |                                                                                                                                                                                                                                                                                 |                       | WWW.C                                                                                                                                                                                | lynamicpaper      | <u>s.com</u> | 1   |
|---|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|-----|
|   | Pa  | ge 3                                                                                                                                                                                                                                                                            | •                     | Mark Scheme                                                                                                                                                                          | Syllabus          | Paper        |     |
|   |     |                                                                                                                                                                                                                                                                                 |                       | GCE A/AS LEVEL – May/June 2007                                                                                                                                                       | 9702              | 2            |     |
|   | (d) | (i)                                                                                                                                                                                                                                                                             | <u>den</u> s          | sity of solids and liquids are (about) equal                                                                                                                                         |                   | B1           | [1] |
|   |     | (ii)                                                                                                                                                                                                                                                                            | rigid                 | ng forces: fixed volume<br>I forces: retains shape / does not flow / little deformatior<br>w 1 mark for fixed volume, fixed shape)                                                   | 1                 | B1<br>B1     | [2] |
| 4 | (a) | (i)                                                                                                                                                                                                                                                                             | •                     | ange in) potential energy = <i>mgh</i><br>056 × 9.8 × 16                                                                                                                             |                   | C1           |     |
|   |     |                                                                                                                                                                                                                                                                                 |                       | 78 J (allow 8.8)                                                                                                                                                                     |                   | A1           | [2] |
|   |     | (ii)                                                                                                                                                                                                                                                                            | (initi                | al) kinetic energy = $\frac{1}{2}mv^2$                                                                                                                                               |                   | C1           |     |
|   |     |                                                                                                                                                                                                                                                                                 |                       | $= \frac{1}{2} \times 0.056 \times 18^{2}$                                                                                                                                           |                   | 01           |     |
|   |     |                                                                                                                                                                                                                                                                                 | total                 | = 9.07 J ( <i>allow 9.1</i> )<br>kinetic energy = 8.78 + 9.07 = 17.9 J                                                                                                               |                   | C1<br>A1     | [3] |
|   |     |                                                                                                                                                                                                                                                                                 |                       |                                                                                                                                                                                      |                   |              |     |
|   | (b) | kine                                                                                                                                                                                                                                                                            | etic e                | nergy = $\frac{1}{2}mv^2$                                                                                                                                                            |                   |              |     |
|   | .,  | 17.                                                                                                                                                                                                                                                                             | 9 = ½                 | $v_2 \times 0.056 \times v^2$ and $v = 25(.3) \mathrm{m  s^{-1}}$                                                                                                                    |                   | B1           | [1] |
|   |     |                                                                                                                                                                                                                                                                                 |                       |                                                                                                                                                                                      |                   |              |     |
|   | (c) | hor                                                                                                                                                                                                                                                                             | izonta                | al velocity = 18 m s <sup>-1</sup>                                                                                                                                                   |                   | B1           | [1] |
|   |     |                                                                                                                                                                                                                                                                                 |                       |                                                                                                                                                                                      |                   |              |     |
|   | (d) | (i)                                                                                                                                                                                                                                                                             |                       | ect shape of diagram<br>sides of right-angled triangle with correct orientation)                                                                                                     |                   | B1           |     |
|   |     |                                                                                                                                                                                                                                                                                 | (100                  |                                                                                                                                                                                      |                   | Ы            |     |
|   |     | (ii)                                                                                                                                                                                                                                                                            |                       | le = $41^{\circ} \rightarrow 48^{\circ}$ (allow trig. solution based on diagram)<br>angle $38^{\circ} \rightarrow 41^{\circ}$ or $48^{\circ} \rightarrow 51^{\circ}$ , allow 1 mark) |                   | A2           | [3] |
|   |     |                                                                                                                                                                                                                                                                                 |                       |                                                                                                                                                                                      |                   |              |     |
| 5 | (a) | (i)                                                                                                                                                                                                                                                                             | vibra                 | ations (in plane) <u>normal</u> to direction of energy propagati                                                                                                                     | on                | B1           | [1] |
|   |     | (ii)                                                                                                                                                                                                                                                                            | vibra                 | ations in <u>one</u> direction (normal to direction of propagatio                                                                                                                    | n)                | B1           | [1] |
|   | (h) | (1)                                                                                                                                                                                                                                                                             |                       | 'displacement) antipodes / where there are no he                                                                                                                                     | ana wawa haa      |              |     |
|   | (u) | (1)                                                                                                                                                                                                                                                                             |                       | displacement) antinodes / where there are no he<br>imum amplitude (of vibration)                                                                                                     | aps, wave has     | B1           |     |
|   |     |                                                                                                                                                                                                                                                                                 | at (d                 | displacement) nodes/where there are heaps, amplitud                                                                                                                                  | e of vibration is |              |     |
|   |     |                                                                                                                                                                                                                                                                                 |                       | p/minimum<br>t is pushed to / settles at (displacement) nodes                                                                                                                        |                   | B1<br>B1     | [3] |
|   |     | <i></i>                                                                                                                                                                                                                                                                         |                       |                                                                                                                                                                                      |                   |              |     |
|   |     | (11)                                                                                                                                                                                                                                                                            | $2.5\lambda$<br>v = 1 | l = 39 cm<br>fλ                                                                                                                                                                      |                   | C1<br>C1     |     |
|   |     |                                                                                                                                                                                                                                                                                 | v = 2                 | $2.14 \times 10^3 \times 15.6 \times 10^{-2}$                                                                                                                                        |                   |              |     |
|   |     |                                                                                                                                                                                                                                                                                 | = ;                   | 334 m s⁻¹ ( <i>allow 330, not 340</i> )                                                                                                                                              |                   | A1           | [3] |
|   | (-) | 04-                                                                                                                                                                                                                                                                             | tion                  | numero formed by interference / and and a little / and the                                                                                                                           | of                |              |     |
|   | (C) | <ul> <li>c) Stationary wave formed by interference / superposition / overlap of either wave travelling down tube and its reflection or two waves of same (type and) frequency travelling in opposite directions speed is the speed of the incident / reflected waves</li> </ul> |                       |                                                                                                                                                                                      |                   | B1           |     |
|   |     |                                                                                                                                                                                                                                                                                 |                       |                                                                                                                                                                                      |                   | B1           | 101 |
|   |     |                                                                                                                                                                                                                                                                                 |                       |                                                                                                                                                                                      |                   | B1           | [3] |

|   |                                       | www.dynamicpa                                                                                                                             |        |            |     |  |  |
|---|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|-----|--|--|
|   | Page 4                                | Mark Scheme Syllabu                                                                                                                       |        | Paper      | •   |  |  |
|   |                                       | GCE A/AS LEVEL – May/June 2007                                                                                                            | 9702   | 2          |     |  |  |
| 6 |                                       | tal resistance = 0.16 $\Omega$<br>.m.f. = <i>either</i> (14 – <i>E</i> ) or ( <i>E</i> – 14)                                              |        | A1<br>A1   | [2] |  |  |
|   |                                       | $er 14 - E = 42 \times 0.16$ or $(E - 14) = -42 \times 0.16$<br>7.3 V                                                                     |        | C1<br>A1   | [2] |  |  |
|   |                                       | ge = It<br>2.5 × 4 × 60 × 60<br>8 × 10 <sup>5</sup> C                                                                                     |        | C1<br>A1   | [2] |  |  |
|   |                                       | er energy = EQ or energy = Eit<br>er energy = $14 \times 1.8 \times 10^5$ or energy = $14 \times 12.5 \times 4$<br>= $2.52 \times 10^6$ J | × 3600 | C1<br>A1   | [2] |  |  |
|   | (iii) ener                            | $gy = I^{2}Rt  or  Vit \text{ and } V = IR \\ = 12.5^{2} \times 0.16 \times 4 \times 3600 \\ = 3.6 \times 10^{5} \text{ J}$               |        | C1<br>A1   | [2] |  |  |
|   | (c) efficiency                        | $t = (2.52 \times 10^6 - 3.6 \times 10^5)/(2.52 \times 10^6)$<br>= 86%                                                                    |        | C1<br>A1   | [2] |  |  |
| 7 | <b>(a)</b> β(-decay                   | )                                                                                                                                         |        | B1         | [1] |  |  |
|   |                                       | either any two of Z, N and A do not change                                                                                                |        |            |     |  |  |
|   | <i>or</i> it<br>Allow 'α(<br>diagram' | or it is an electromagnetic wave Allow ' $\alpha$ (-decay) as change of 4 in the nucleon number cannot be shown on the                    |        | B1<br>(B2) | [2] |  |  |