UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the May/June 2006 question paper

9702 PHYSICS

9702/06

Paper 6

Maximum raw mark 40

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

The minimum marks in these components needed for various grades were previously published with these mark schemes, but are now instead included in the Report on the Examination for this session.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

				www.dynar	nicpape	ers.con	n
	Page	- 1		cheme	Syllabus		
			GCE A – Ma	y/June 2006	9702	06	
Ор	tion	A - A	Astrophysics and Cosmology				
1	Plar	net:	almost circular orbits all in nearly the same plane			B1 B1	
	Cor	net:	highly elliptical orbits in many different planes			B1 B1	[4]
2	(a)		an) density natter in the Universe			M1 A1	[2]
	(b)	(i)	symmetrical curve below given touching given line at 'present t			M1 A1	[2]
		(ii)	H_0 not known with any certainty mass of matter in the Universe extent of Universe unknown (allow 1 of the last 2 marks for μ	not known		B1 B1 B1	[3]
3	1.3 v =	1 light-year = 0.306 pc (allow 0.3 pc) 1.3 × 10 ¹⁰ light-years = 3.98×10^3 Mpc $v = H_0 d$ speed = $60 \times 3.98 \times 10^3 = 2.39 \times 10^5$ km s ⁻¹					
	ratio		$= (2.39 \times 10^5 \times 10^3)/(3.0 \times 10^8)$ = 0.8			A1	[4]
4	e.g. vast expense money could be spent on humanitarian aid					(M1) (A1)	
	observations possible that cannot be made on Earth since atmosphere limits observations					(M1) (A1)	
	technological/scientific developments on Earth greater understanding of Universe leads to 'spin off' benefits for individuals					(M1) (M1) (A1)	
	Any	' sen	sible comments, 1 each to max	5		B5	[5]
Ор	tion	F - T	he Physics of Fluids				
5	(a)	con	servation of volume/mass/densit	ty or incompressible		B1	[1]
	(b)	con	servation of energy			B1	[1]
6	(a)	high	near jet is moving at speed her speed air has a lower	OR water in jet is moving at spe OR high-speed water has lower		B1 B1	
	(be		ssure cause) air is dragged along by ar iot	OR air is drawn into water jet		B1	
		water jet air (outside pump) is not moving OR loss of air reduces pre		OR loss of air reduces pressure		B1	[4]
	(b)	(i)	air/water in pump has a higher so greater pressure difference	speed		M1 A1	[2]

Dat	ge 2		Mark Scheme	amicpaper Syllabus	S.COM Paper
Γα	ye z		A – May/June 2006	9702	06
	(i) no change in speed of a so no change in pressure difference	u ,		М1 \1
		(allow any logical argum	ent based on liquid causing more/less	drag on air)	
' (a	•	ldy currents have kinetic er ldy currents caused by	nergy OR cause extra drag	Ν	/ 1
		ovement of the car tra energy (of eddy current	OR energy required to overcom ts) is derived from car's fuel	0	A1 A1
(k	b) (i	power = force × speed so power = $\frac{1}{2}C_{D}A\rho v^{2} \times v$	\prime and A and ρ are constants		31 31
	(i) $84 \times 10^3 = \frac{1}{2} \times 0.34 \times 1.5$ $v_{\text{max}} = 63 \text{ m s}^{-1}$	$8 \times 1.1 \times v_{\max}^{3}$		C1
	(i	i) $P = \frac{1}{2} \times 0.34 \times 1.8 \times 1.1$	$\times (63 + 9)^3$		C1
	(-	P = 126 kW ratio = 126 / 84 = 1.5		C	C1 \1
Optio	on M	- Medical Physics			
6 (a		ternating voltage oplied across (piezo-electric	a) anyatal		31 31
	C	uses crystal to vibrate	o give resonance (in US range)	E	31 31
(k	•	avelength at 1 MHz is short greater detail is possible	ter		31 31
) е.	•	CO ₂ laser (1) IR radiation st	rongly absorbed by water (1) cused to give high power density (1) leeding (1)	r (1)	
e.			beam onto retina (1) nd forms a weld (1) or argon laser (1)		
	а	ny two examples: named (1	l) plus further detail (2)	E	36
(8	allow	up to two marks for each d	liagnostic technique)		
0 (a	W V	inimum intensity (of sound) here intensity = (sound) po- alue is 1×10^{-12} W m ⁻² 3 kHz (allow 2 kHz \rightarrow 3 k	wer per unit area at a stated frequency	/ <i>A</i> E	M1 A1 B1 B1

			www.dynar	nicpape	ers.c	com		
Page 3		93	Mark Scheme Syllabus		Paper			
			GCE A – May/June 2006	9702		06		
	(b)	(i)	intensity = $(0.14 \times 10^{-6})/(54 \times 10^{-6}) = 2.6 \times 10^{-3} \text{ W m}^{-2}$ /L = 10 lg $(2.6 \times 10^{-3})/(1 \times 10^{-12})$ = 94 dB		C1 C1 A1	[3]		
		(ii)	comment e.g. would be perceived as being loud could cause tinnitus over a short period of time could cause deafness over a long period of time higher level than is acceptable in the workplace					
			any appropriate comment, 1 mark		B1	[1]		
Ор	Option P - Environmental Physics							
11	(a)	wat at ti	mes of low usage of electrical power er pumped from low-level to high-level reservoir mes of high/sudden demand for electrical power er released to pass through turbines		B1 B1 B1 B1	[4]		
	(b)	ene	trical energy generated = $78 \times 10^6 \times 4.0 \times 3600 = 1.12 \times 10^{12} \text{ J}$ rgy to be stored = $(1.12 \times 10^{12})/0.75 = 1.5 \times 10^{12} \text{ J}$ $\times 10^{12} = \rho Vgh$ = $1.0 \times 10^3 \times V \times 9.8 \times 95$		C1 C1 C1			
		V =	$1.6 \times 10^6 \text{ m}^3$		A1	[4]		
12	(a)	(tha	: it is impossible to convert all of a given amount of thermal energy it is) $W < Q_H$ - W) is energy rejected at temperature T_L	into work	B1 B1 B1	[3]		
	(b)	W/C	$Q_{\rm H} = 1 - T_{\rm L}/T_{\rm H}$		B1	[1]		
	(c)	effic	ciency = 1 - 313/393 = 0.20		C1 A1	[2]		
13	(a)	(i)	e.g. industry setting up people preparing to go to work starting to cook breakfast					
			(allow any two sensible suggestions, 1 each)		B2	[2]		
		(ii)	 e.g. change in temperature with use of heaters/air conditioning holiday or workday with more power used by industry when not on holida 					
			(allow any two sensible suggestions, 1 each)		B2	[2]		

			micpapers.com			
	Page 4		Mark Scheme GCE A – May/June 2006	Syllabus 9702	Pape 06	
L	(b)	(i)			31]
		(ii)	increased demand in the afternoon	E	31	[2]
		(alle	ow any two sensible suggestions in (i) and (ii))			
0	ption	т-	Telecommunications			
14	l (a)		tantaneous) displacement of information signal ermines the frequency of the carrier wave		И1 \1	[2]
	(b)	(i)	12 V	E	31	[1]
		(ii)	650 kHz	E	31	[1]
		(iii)	550 kHz	E	31	[1]
		(iv)	3000	E	31	[1]
15	5 (a)	ana	logue-to-digital converter (do not allow ADC)	E	31	[1]
	(b)	con	trols the time at which samples are taken	E	31	[1]
	(c)	ena	bles higher frequency components in signal to be 'detected'	E	31	[1]
16	6 (a)		ctromagnetic shielding for the inner conductor braid is earthed		31 31	[2]
	(b)	SO I	increased bandwidth means more information can be carried so more calls can be transmitted simultaneously fewer links are required		31 31 31	[3]
17	7 (a)	inte	cross-talk/cross-linking rference/picking up atmospherics/picking up man-made radiatior te noise associated with vibrating atoms	ı		
		(an	y two, 1 each)	E	32	[2]
	(b)	(i)	number of dB = 10 lg (P_2/P_1) 35 = 10 lg $(P/{7.6 \times 10^{-6}})$ P = 0.024 W		C1 A1	[2]
		(ii)	number of dB = 10 lg (2.6/0.024) = 20.3 length = 20.3/5.8 = 3.5 km		C1 \1	[2]