

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY 9701/22

Paper 2 AS Structured Questions

October/November 2017

MARK SCHEME
Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Question	Answer		
1(a)	Cl Cl (trigonal) pyramid(al) 3 marking points for each box: diagram, name and shape. for each box: all three correct = 2 marks two correct = 1 mark	4	
1(b)(i)	SiC14 simple / molecular AND Van der Waals' / id-id forces / London / dispersion forces / IMFs	1	
	NaCl ionic OR giant	1	
	bonding (in NaCl) stronger (than forces in SiCl ₄) owtte	1	
1(b)(ii)	SiC14 has more electrons ORA	1	
	stronger Van der Waals' / id-id forces / London / dispersion forces / IMFs	1	
1(b)(iii)	;;;: ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	1	

© UCLES 2017 Page 2 of 7

Question	Answer	Marks
2(a)	-444	
2(b)(i)	(higher rate / rate increases) due to higher frequency of successful collisions	1
	more molecules / particles with $E\geqslant E_a$	1
2(b)(ii)	(percentage decomposition of PCl_5) increases	1
	(forward) reaction is endothermic	1
2(c)	rates of forward and reverse / backward reactions are equal	1
	closed / sealed system/container	1
2(d)(i)	$n_{\text{TOTAL}} = 1.20 + 0.80 + 0.80$ OR 2.80 (mol) OR mole fraction = 1.20/2.80 OR 0.429	1
	$pPCl_5 = 1 \times 10^5 \times (1.20/2.80) = 4.29 \times 10^4 \text{ (Pa)}$	1
2(d)(ii)	$K_{p} = \frac{pPCl_{3} \times pCl_{2}}{pPCl_{5}}$	1
2(d)(iii)	1.91×10^4	1
	Pa	1

Question	Answer	Marks
3(a)	(IE) <u>decreases / lower</u> because increasing distance of outer electron(s) from nucleus OR increasing distance of outer / valence shell from nucleus OR increased shielding / screening (from inner shells)	1
	reduces nuclear attraction (for electrons)	1
3(b)(i)	(Melting point) increases / higher because (molecules have an) increasing (number of) electrons	1
	increasing strength / number / amount of IMFs / Van der Waals' / id–id / London / dispersion (forces)	1
3(b)(ii)	increased metallic / (cat)ionic radius / size OR decreasing (cat)ion charge-density	1
	decreased attraction (of ions) for delocalised / outer electrons	1
3(c)(i)	reaction 1: HNO ₃ or nitric((V)) acid	1
	reaction 2: water / H ₂ O	1
3(c)(ii)	barium oxide	1
	2Ba + O₂ → 2BaO	1
3(c)(iii)	NO ₂ / nitrogen dioxide / nitrogen(IV) oxide AND O ₂ / oxygen	1
	(red / yellow-)brown gas OR gas given off that relights glowing splint	1
3(c)(iv)	white ppt / solid / suspension	1
	of BaSO ₄ / barium sulfate OR Mg(OH) ₂ / magnesium hydroxide	1
	BaSO ₄ is insoluble OR Mg(OH) ₂ is insoluble / partially / slightly / sparingly soluble	1

© UCLES 2017 Page 4 of 7

					2017
Question			Answer		Marks
4(a)		concentrated H ₂ SO ₄ / H ₃ PO ₄ AND NaBr			5
	1	OR (red) P/Br ₂ OR HBr	substitution		
	2	aqueous / dilute NaOH / KOH	hydrolysis OR substitution		
	3	concentrated H ₂ SO ₄ / H ₃ PO ₄ OR Al ₂ O ₃ / P ₄ O ₁₀ / pumice / porous pot / SiO ₂	dehydration		
	4	(ethanolic) HBr	addition		
		4 marks for column 1 (one per row)	1 mark for col 2		
4(b)	M1	Br ^Θ C+ Br			3
	correct dipole on δ+C—Brδ- AND curly arrow from C—Br bond to Br				
	M2 (correct intermediate with + charge			
	М3 (curly arrow from lone pair on \circ OH to $C^{\scriptscriptstyle{+}}$ of c	arbocation		

© UCLES 2017 Page 5 of 7

Question	Answer	Marks
4(c)(i)	(different molecules) same molecular formula / same numbers of atoms of each (type of) element	1
	different structural formulae / displayed formulae	1
	chain / skeletal functional group position(al) / regioisomerism two types correct = 1 mark, all three correct = 2 marks	2
4(c)(ii)	S _N / nucleophilic substitution	1
	no (stable) (carbo)cation / intermediate is formed	1
	only one alkyl group / fewer alkyl / methyl groups (compared to reaction 2) AND limited (+)I / inductive effect / less electron donating (effect)	1
4(d)(i)	mirror images are super(im)posable OR not chiral / no chirality / no chiral/asymmetric carbon/centre / achiral	1
	one or both C/end of double bond has identical groups / 2 methyl groups / 2 H (atoms)	1
4(d)(ii)	addition	1
	H ₃ C H	2
4(d)(iii)	not/non- biodegradable / harmful combustion products	1

© UCLES 2017 Page 6 of 7

Question	Answer	Marks
4(e)	2-bromo-2-methylpropane	1
	1-bromo-2-methylpropane	1

© UCLES 2017 Page 7 of 7