CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

## MARK SCHEME for the October/November 2013 series

## 9701 CHEMISTRY

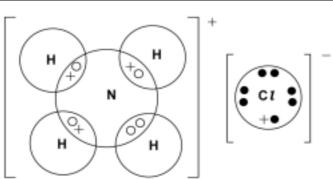
9701/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.


Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



## www.dynamicpapers.com

| Page 2 | Mark Scheme                         | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE A LEVEL – October/November 2013 | 9701     | 42    |

1 (a)



8 e<sup>-</sup> around chlorine[1]1 H-electron (+) on the Cl<sup>-</sup> ion[1]3 covalent (ox) and one dative (oo) around N[1]

[3]

| (b) (i) | it would react (with H <sub>2</sub> SO <sub>4</sub> ) | [1] |
|---------|-------------------------------------------------------|-----|
|---------|-------------------------------------------------------|-----|

- (ii)  $CaO + H_2O \longrightarrow Ca(OH)_2$  [1]
- (iii) CaO absorbs more water *or* CaO has greater affinity for water [1]
  - [3]

| (c) | (i)  | $2Ca(NO_3)_2 \longrightarrow 2CaO + 4NO_2 + O_2$                                                 | [1] |
|-----|------|--------------------------------------------------------------------------------------------------|-----|
|     | (ii) | (Down the group, the nitrates)                                                                   |     |
|     |      | become more stable/stability increases                                                           | [1] |
|     |      | because the size/radius of ion $(\mathbf{M}^{2+})$ increases                                     | [1] |
|     |      | thus causing less polarisation/distortion<br>of the anion/NO <sub>3</sub> <sup>-</sup> /N-O bond | [1] |
|     |      |                                                                                                  | [4] |

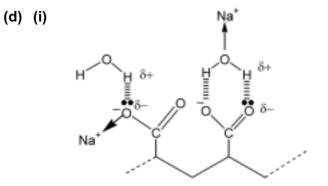
[Total: 10]

|   |         |                | www.                                                                                                                                                                                                                  | dynamicpape | ers.com           |
|---|---------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|
|   | Page 3  | 3              | Mark Scheme                                                                                                                                                                                                           | Syllabus    | Paper             |
|   |         |                | GCE A LEVEL – October/November 2013                                                                                                                                                                                   | 9701        | 42                |
| 2 | (a) (i) | Si-S           | i bonds are weaker (than C-C bonds)                                                                                                                                                                                   |             | [1]               |
|   | (ii)    | meta           | allic (Sn) is weaker than (giant) covalent (Ge)                                                                                                                                                                       |             | [1]               |
|   |         |                |                                                                                                                                                                                                                       |             | [2]               |
|   | (b) (i) | or Si<br>or Si | $I_4 + 2H_2O \longrightarrow SiO_2 + 4HCl$<br>$iCl_4 + 4H_2O \longrightarrow Si(OH)_4 + 4HCl$<br>$iCl_4 + 3H_2O \longrightarrow H_2SiO_3 + 4HCl$<br>$ial$ hydrolysis is <i>not sufficient</i> e.g. to SiCl_3OH + HCl) |             | [1]               |
|   | (ii)    | PbC            | $l_4 \longrightarrow PbCl_2 + Cl_2$                                                                                                                                                                                   |             | [1]               |
|   | (iii)   | SnC            | $l_2$ + 2FeC $l_3 \longrightarrow$ SnC $l_4$ + 2FeC $l_2$                                                                                                                                                             |             | [1]               |
|   | (iv)    | or S           | $H_2 + 2NaOH \longrightarrow Na_2SnO_3 + H_2O$<br>$nO_2 + 2NaOH + 2H_2O \longrightarrow Na_2Sn(OH)_6$<br>$nic equation SnO_2 + 2OH^- \longrightarrow SnO_3^{2^-} + H_2O$                                              |             | [1]<br><b>[4]</b> |
|   |         |                |                                                                                                                                                                                                                       |             | [Total: 6]        |

| (ii)<br>(b) (i)<br>(ii) | GCE A LEVEL – October/November 2013 $NH_3 + HZ \longrightarrow NH_4^+ + Z^ CH_3OH + HZ \longrightarrow CH_3OH_2^+ + Z^ NH_3 + B^- \longrightarrow NH_2^- + BH$ $CH_3OH + B^- \longrightarrow CH_3O^- + BH$ | Syllabus Pape<br>9701 42 |   |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---|
| (ii)<br>(b) (i)<br>(ii) | $CH_{3}OH + HZ \longrightarrow CH_{3}OH_{2}^{+} + Z^{-}$<br>$NH_{3} + B^{-} \longrightarrow NH_{2}^{-} + BH$                                                                                               |                          |   |
| (b) (i)<br>(ii)         | · -                                                                                                                                                                                                        |                          |   |
| (ii)                    |                                                                                                                                                                                                            |                          |   |
| (ii)                    |                                                                                                                                                                                                            |                          |   |
| · · ·                   | a reaction that can go in either direction                                                                                                                                                                 |                          |   |
|                         | <b>rate</b> of forward = <b>rate</b> of backward reaction<br>or forward/back reactions occurring but concentrations of a                                                                                   | ll species do not change |   |
| (c) (i)                 | a solution that resists changes in pH                                                                                                                                                                      |                          |   |
|                         | when small quantities of acid or base/alkali are added                                                                                                                                                     |                          |   |
| (ii)                    | in the equilibrium system HZ + $H_2O \Rightarrow Z^- + H_3O^+$                                                                                                                                             |                          |   |
|                         | addition of acid: reaction moves to the left<br><i>or</i> H <sup>+</sup> combines with Z <sup>-</sup> <u>and</u> forms HZ                                                                                  |                          |   |
|                         | addition of base: the reaction moves to the right<br><i>or</i> H⁺ combines with OH⁻ <u>and</u> more Z⁻ formed                                                                                              |                          |   |
|                         |                                                                                                                                                                                                            | [5 m                     | a |
| (d) (i)                 | $[H^+] = \sqrt{(0.5 \times 1.34 \times 10^{-5})} = 2.59 \times 10^{-3} \text{ (mol dm}^{-3}\text{)}$                                                                                                       |                          |   |
|                         | pH = <b>2.59/2.6</b> (min 1 d.p)                                                                                                                                                                           | ecf                      |   |
| (ii)                    | $CH_3CH_2CO_2H + NaOH \longrightarrow CH_3CH_2CO_2Na + H_2O$                                                                                                                                               |                          |   |
| . ,                     | n(acid) in 100 cm <sup>3</sup> = 0.5 × 100/1000 = 0.05 mol<br>n(acid) remaining = 0.05 – 0.03 = 0.02 mol<br>[acid remaining] = <b>0.2</b> (mol dm <sup>-3</sup> )                                          |                          |   |
|                         | likewise, n(salt) = 0.03 mol<br>[salt] + <b>0.3</b> (mol dm <sup>-3</sup> )                                                                                                                                |                          |   |
| (iv)                    | pH = 4.87 + log(0.3/0.2) = <b>5.04–5.05</b>                                                                                                                                                                | ecf                      |   |
|                         |                                                                                                                                                                                                            |                          |   |
| • •                     | $CH_3CH_2COCl$<br>$SOCl_2 \text{ or } PCl_5$                                                                                                                                                               |                          |   |
| <b>J</b> is             | NaCℓ<br>corresponding Br compounds for <b>G</b> , <b>H</b> and <b>J</b> ; CH₃CH₂COBr,                                                                                                                      | SOBra NaBr)              |   |

[Total: 18]

| Page 5      | 5          |                                                                                  | Mark Scheme                                                                                                            |                                         | Syllabus           | Paper   | r        |
|-------------|------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------|---------|----------|
|             | -          | GCE A LE                                                                         | EL – October/No                                                                                                        | ovember 2013                            | 9701               | 42      |          |
| • • •       |            | gy change) whe<br>i in the gas phas                                              | n 1 mol of bonds<br>e                                                                                                  |                                         |                    |         | [1<br>[1 |
|             |            |                                                                                  |                                                                                                                        |                                         |                    |         | [2       |
| (b) (i)     | (C-X       | bond energy) d                                                                   | ecreases/becomes                                                                                                       | s weaker (from F to                     | ) I)               |         | [′       |
|             | due        | to bond becomir                                                                  | ng longer/not such                                                                                                     | efficient orbital ove                   | erlap              |         | [1       |
| (ii)        | •          | ••                                                                               | of C-X decreases)<br>hat it is from F to I                                                                             | the halogenalkand                       | es become more r   | eactive | [1       |
|             |            |                                                                                  |                                                                                                                        |                                         |                    |         | [3       |
|             |            |                                                                                  | than the C-F and                                                                                                       | C-H bonds                               |                    |         |          |
| or          | C-C1 b     | ond (E = 340) <b>a</b>                                                           | nd C-H (E = 410)                                                                                                       |                                         |                    |         | [1       |
|             | •          | sily) broken to fo<br>he breakdown o                                             | rm $Cl^{\bullet}/Cl$ radicals, f $O_3$ into $O_2$                                                                      | /C <i>l</i> atoms                       |                    |         | [1<br>[1 |
|             | 5          |                                                                                  |                                                                                                                        |                                         |                    |         | [3       |
|             |            |                                                                                  |                                                                                                                        |                                         |                    |         | •        |
|             |            | H <sub>2</sub> -CO <sub>2</sub> H<br>CH <sub>2</sub> CH <sub>2</sub> -C <i>1</i> |                                                                                                                        |                                         |                    |         | [1<br>[1 |
| /           |            |                                                                                  |                                                                                                                        |                                         |                    |         | -        |
| $\langle ($ |            |                                                                                  |                                                                                                                        |                                         |                    |         |          |
| Br          | ·          |                                                                                  |                                                                                                                        |                                         |                    |         | ['       |
|             |            |                                                                                  |                                                                                                                        |                                         |                    |         | [3       |
|             |            |                                                                                  |                                                                                                                        |                                         |                    |         | •        |
| (e) (i)     | light      | ′UV/h∨ <i>or</i> 300°C                                                           |                                                                                                                        |                                         |                    |         | [^       |
| (ii)        | (free      | ) radical substitu                                                               | ition                                                                                                                  |                                         |                    |         | [        |
| (iii)       | $\Delta H$ | = E(C-H) – E(H-                                                                  | -C <i>l</i> ) = 410 - 431 =                                                                                            | <b>–21</b> kJ mol⁻¹                     |                    |         | [′       |
| (iv)        | $\Delta H$ | = E(C-H) – E(H-                                                                  | ·I) = 410 – 299 = <b>+</b>                                                                                             | <b>-111</b> kJ mol⁻¹                    |                    | ecf     | [        |
| (v)         | The        | reaction with iod                                                                | ine is endothermic                                                                                                     | $c \text{ or } \Delta H$ is positive of | or requires energy |         | [′       |
| (vi)        |            | $\rightarrow$ 2Cl <sup>•</sup>                                                   |                                                                                                                        | <b>~</b> 1•                             |                    |         | [^       |
|             |            | CH <sub>2</sub> + C <i>l</i> <sub>2</sub><br>CH <sub>2</sub> + C <i>l</i>        | $\rightarrow \mathbf{CH}_{3}\mathbf{CH}_{2}\mathbf{Cl} + 0$<br>$\rightarrow \mathbf{CH}_{3}\mathbf{CH}_{2}\mathbf{Cl}$ | u l                                     |                    |         | [`<br>[` |
|             |            |                                                                                  |                                                                                                                        |                                         |                    |         | [8       |
|             |            |                                                                                  |                                                                                                                        |                                         |                    |         |          |


|   |                | www.dynamicpape |                                                                                                                               |          |       |  |  |
|---|----------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------|----------|-------|--|--|
|   | Page 6         | i               | Mark Scheme                                                                                                                   | Syllabus | Paper |  |  |
|   |                |                 | GCE A LEVEL – October/November 2013                                                                                           | 9701     | 42    |  |  |
| 5 | (a) (i)        | man             | <b>y</b> monomers form a polymer                                                                                              |          | [1]   |  |  |
|   | (ii)           | addi            | tion                                                                                                                          |          | [1]   |  |  |
|   | (iii)          |                 | /double/ $\pi$ bond is broken <b>and</b> new C-C single bond <u>s</u> a puble bond breaks and forms single bonds with other r |          | [1]   |  |  |
|   |                |                 |                                                                                                                               |          | [3]   |  |  |
|   | <b>(b)</b> pro | penoi           | c acid                                                                                                                        |          | [1]   |  |  |
|   |                |                 |                                                                                                                               |          | [1]   |  |  |
|   |                |                 |                                                                                                                               |          |       |  |  |

(c) (i)

carbon chain and  $CO_2H$  at least one sodium salt

- (ii) 120° to 109(.5)° [1] due to the change from a trigonal/sp<sup>2</sup> carbon to a tetrahedral/sp<sup>3</sup> carbon [1]
  - [4]

[1] [1]



Any four: hydrogen bond **labelled** water H-bonded to O through H atom  $\delta$ +/ $\delta$ - shown on each end of a H-bond lone pair shown on O<sup>-</sup> or C=O or H<sub>2</sub>O on a **correct H-bond** Na<sup>+</sup> shown as coordinated to a water molecule

| (ii) | Solution became paler <b>and</b> Cu <sup>(2+)</sup> swapped with Na <sup>(+)</sup> |     |
|------|------------------------------------------------------------------------------------|-----|
|      | <i>or</i> darker in colour <b>and</b> polymer absorbs water                        | [1] |

[4]

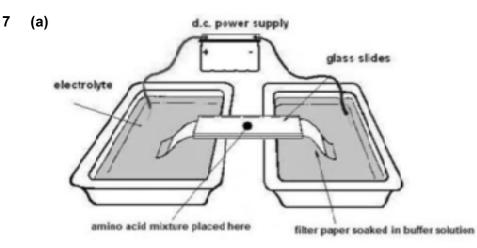
[3]

|         |                  | www                                                                                          | .dynamicpape | ers.com     |
|---------|------------------|----------------------------------------------------------------------------------------------|--------------|-------------|
| Page 7  | ,                | Mark Scheme                                                                                  | Syllabus     | Paper       |
|         |                  | GCE A LEVEL – October/November 2013                                                          | 9701         | 42          |
| (e) (i) | alke             | ne(1), amide(1)                                                                              |              | [2]         |
| (ii)    | $\rm NH_3$       |                                                                                              |              | [1]         |
| (iii)   | H <sub>2</sub> O |                                                                                              |              | [1]         |
| (iv)    |                  | (aq)/H₃O <sup>+</sup> <b>and</b> heat/reflux ( <b>not</b> warm)<br>H⁻ (aq), heat and acidify |              | [1]         |
|         | 01 0             | i (aq), neat and actuiry                                                                     |              | [5]         |
|         |                  |                                                                                              |              | [Total: 17] |

| F  | Page 8 |                      | Mark Scheme                                                                                                                                                     | dynamicpaper               | Paper        |
|----|--------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|
|    |        |                      | GCE A LEVEL – October/November 2013                                                                                                                             | 9701                       | 42           |
|    |        |                      | Section B                                                                                                                                                       |                            |              |
| (a | a) (i) | six/6                | (gsv, sgv, gvs, vgs, svg,vsg)                                                                                                                                   |                            | [1           |
|    | (ii)   | но<br>Н <sub>2</sub> | NH NH                                                                                                                                                           | он                         |              |
|    |        |                      | <b>displayed</b> peptide bonds<br>ect formula of peptide                                                                                                        |                            | [1<br>[1     |
|    | (iii)  | valin                | e ( <b>allow</b> glycine)                                                                                                                                       |                            | [1           |
|    | (iv)   | hydro<br>ionic       | two of:<br>ogen bonds <b>and</b> $CO_2H$ or OH or $NH_2$ or CONH or CO<br>bonds <b>and</b> $NH_3^+$ or $CO_2^-$<br>der Waals' <b>and</b> –CH <sub>3</sub> or –H | or NH or CO <sub>2</sub> - | 2 × [1<br>[6 |
| (k | o) (i) | same                 | e shape/structure as substrate                                                                                                                                  |                            | [1           |
|    |        |                      | bitor) competes/blocks/binds/bonds to <b>active site</b><br>Ibstrate cannot bind to <b>active site</b>                                                          |                            | [1           |
|    | (ii)   | binds                | s with enzyme <b>and</b> changes shape/3D structure (of er                                                                                                      | zyme/active site)          | [´           |
|    | (iii)  | Rate of reaction →   | No inhibitor<br>Non-competitive inhibitor                                                                                                                       |                            |              |

[1]

[4]


[Total: 10]

Substrate Concentration +

I

| n |
|---|
|   |

| Page 9 | Mark Scheme                         | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE A LEVEL – October/November 2013 | 9701     | 42    |



power supply (idea of complete circuit) electrolyte/buffer solution gel/filter paper/absorbent paper (amino acid) sample/mixture [centre of plate]  $4 \times [1]$ 

[4]

 (b) any two from: size/Mr (of the amino acid species) charge (on the amino acid species) temperature

2 × [1]

| [2] |
|-----|
|-----|

| (c)                                               | c) Ratio of the <u>concentration</u> of a solute in each of two (immiscible) solvents<br>or equilibrium constant representing the distribution of a solute between two solvents |                                                                                                                  |     |     |  |  |  |  |  |  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----|-----|--|--|--|--|--|--|
| or $PC = [X]_a/[X]_b$ (at a constant temperature) |                                                                                                                                                                                 |                                                                                                                  |     |     |  |  |  |  |  |  |
|                                                   |                                                                                                                                                                                 |                                                                                                                  |     | [1] |  |  |  |  |  |  |
| (d)                                               | (i)                                                                                                                                                                             | $K_{pc} = [Z \text{ in ether}]/[Z \text{ in H}_2O] - allow reverse ratio40 = (x/0.05)/((4-x)/0.5)$               |     | [1] |  |  |  |  |  |  |
|                                                   |                                                                                                                                                                                 | = 3.2 g                                                                                                          | ecf | [1] |  |  |  |  |  |  |
|                                                   | (ii)                                                                                                                                                                            | First extraction<br>40 = (x/0.025)/((4–x)/0.5)<br>x = <b>2.67 g</b>                                              | ecf | [1] |  |  |  |  |  |  |
|                                                   | (iii)                                                                                                                                                                           | Second extraction: 1.33g remain in solution<br>Second extraction<br>40 = (y/0.025)/((1.33-y)/0.5)<br>y = 0.887 g |     |     |  |  |  |  |  |  |
|                                                   |                                                                                                                                                                                 | mass extracted = 2.67 + 0.89 = <b>3.56/3.6 g</b>                                                                 | ecf | [1] |  |  |  |  |  |  |
|                                                   |                                                                                                                                                                                 |                                                                                                                  |     | [4] |  |  |  |  |  |  |
|                                                   |                                                                                                                                                                                 |                                                                                                                  |     |     |  |  |  |  |  |  |

|   |               |      | www.dynamicpapers.com |                                                                                  |          |       |  |
|---|---------------|------|-----------------------|----------------------------------------------------------------------------------|----------|-------|--|
|   | Page 10       |      | )                     | Mark Scheme                                                                      | Syllabus | Paper |  |
|   |               |      |                       | GCE A LEVEL – October/November 2013                                              | 9701     | 42    |  |
| 8 | (a)           | (i)  | (nitra                | ates are) soluble                                                                |          | [1]   |  |
|   |               | (ii) | Ba <sup>(2)</sup>     | Ba <sup>(2+)</sup> and Pb <sup>(2+)</sup>                                        |          |       |  |
|   |               |      | SO <sub>4</sub>       | (2-)                                                                             |          | [1]   |  |
|   |               |      | BaC                   | O <sub>3</sub> /PbCO <sub>3</sub> /CaSO <sub>4</sub> are insoluble               |          | [1]   |  |
|   |               |      |                       |                                                                                  |          | [4]   |  |
|   | (b)           | (i)  | fertil                | isers/animal manure                                                              |          | [1]   |  |
|   | (ii)<br>(iii) |      | was                   | hing powder/detergents/fertilisers/animal manure                                 |          | [1]   |  |
|   |               |      |                       | /th/production of algae/weeds/plants<br>utrophication                            |          | [1]   |  |
|   |               |      |                       |                                                                                  |          | [3]   |  |
|   | (c)           | (i)  | any                   | one of:                                                                          |          |       |  |
|   |               |      | 280                   | $H_2 + O_2 \longrightarrow 2SO_3$ and $SO_3 + H_2O \longrightarrow H_2SO_4$      |          |       |  |
|   |               |      | or S                  | $O_2 + NO_2 \longrightarrow SO_3 + NO$ and $SO_3 + H_2O \longrightarrow H_2SO_4$ |          |       |  |
|   |               |      | or S                  | $O_2 + \frac{1}{2}O_2 + H_2O \longrightarrow H_2SO_4$                            |          | [1]   |  |

(ii) roasting sulfide ores/extraction of metals from sulfide ores [1]

[2]

[Total: 9]