UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

					WWW	.dynamicpape	ers.com
	Page 2	2		heme: Teachers'		Syllabus	Paper
			GCE A/AS LEV	/EL – October/No	vember 2010	9701	43
1		SO ₂	$\begin{array}{rrrrr} + 3H_2O & \rightarrow & 2H_3P \\ + H_2O & \rightarrow & H_2SO_3 \\ + H_2O & \rightarrow & HNO_2 \end{array}$. ,	$P_4O_{10} + 6H_2O \rightarrow 4$	4H ₃ PO ₄ (1)	
	(iii)	2C <i>1</i> ($_2$ + 2NaOH \rightarrow Na	aC <i>l</i> O ₂ + NaC <i>l</i> O ₃ +	H ₂ O or ionic eqn	(1)	[4]
	(b) (i)		$+ C_2H_6 + H_2S + 9$ ulae (1), balanced	$OO_2 \rightarrow 4CO_2 + SO_2$	0 ₂ + 8H ₂ O		
	(ii)	•	• • •	auses acid rain (1) d rain – defoliation	etc. – or respirat	ory problem	
	(iii) 1000 dm^3 contains 50 dm ³ of H ₂ S this is 50/24 (= 2.083 moles) (1) M _r (ethanolamine) = 24 + 7 + 14 + 16 = 61 therefore mass = 2.083 × 61 = 127(.1) g (1) (or ecf)						
	(iv)	acid	base (1)				
	(v)	= {(=	[:] ∆H _f (rhs) – ∆H _f (lh × 11 – 2 × 242)}{ 51 + 339 12 (kJ mol ^{−1}) (2)	ns) –}{(2 × –21 – 297)	} –1 for each { }	in which there is	an error [8]
			(
							[Total: 12]
2	<u>colo</u> whe	rbital: <u>our</u> du en e p	/ sub-shells / enere to <u>absorption of</u> romoted to higher				[3]
	liga ((N	nd ex H ₄) ₂ C					[max 3]
	(c) n(th	nio) =	0.02 × 19.5/1000	$= 3.9 \times 10^{-4} \text{ mol}$	(1)		
	SO	[Cu ²⁺]	$= 3.9 \times 10^{-4} \times 10^{-4}$	²⁺) in 50 cm ³ = 3.9 <u>)00/50</u> = (7.8 × 10 n(Cu ²⁺), so [Cu ²⁺])⁻³ (mol dm⁻³)) (1) = (7.8 × 10 ⁻³ mo	l dm ⁻³)} (2)
				3 × 10 ^{−4} mol, which narks 0.5 gets 2 m		$0^{-4} = 0.049 - 0.0$	50 % (1) [3]
							[Total: 9]

			WWW.	dynamicpape	ers.com
	Page 3	Mark Scheme: Teacher	Syllabus	Paper	
		GCE A/AS LEVEL – October/November 2010 9701			
3		I: reduction or hydrogenation (1) II: oxidation or redox (1)			[2]
	(b) thymol: or or menthol: or menthone	Br ₂ (aq) (1) NaOH(aq) (1) FeC l_3 (aq) (1) Cr ₂ O ₇ ²⁻ /H ⁺ (1) Lucas test or ZnC l_2 /HC l (1) e: 2,4-DNPH/Brady's reagent (1)	decolourises or wh dissolves (1) violet/purple (colou orange \rightarrow green (1 cloudy or white ppt orange ppt (1)	r) (1))	[6]
					[Total: 8]
4	reaction I: reaction II: reaction IV: reaction V: reaction VI: reaction VII:	$\frac{Cl_2}{P} + \text{light (1) (not aq)}$ Br ₂ + Al Br ₃ or Fe or FeBr ₃ (1) (NaOH, heat in ethanol (1) (allow HNO ₃ + H ₂ SO ₄ (1) conc and < 6 KMnO ₄ + H ⁺ /OH ⁻ + heat (1) Sn + HCl (1) HNO ₂ + HCl, < 10°C (1)	w aqueous EtOH)		[10141.0]
	X is		H (1) allow –N ₂ — an	d –ONa	[max 8]

[Total: 8]

	WWW.	www.dynamicpapers.com			
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper		
	GCE A/AS LEVEL – October/November 2010	9701	43		

- 5 (a) (i) $2H_2O 4e \rightarrow 4H^+ + O_2(1)$
 - (ii) $2Cl^{-} 2e \rightarrow Cl_{2}(1)$
 - **(b)** (i) $E^{\circ} = (1.23 (-0.83)) = 2.06V$ (1)
 - (ii) $E^{\circ} = (1.36 (-0.83)) = 2.19V (1)$ (in (i) if (a)(i) as $4(OH^{-}) - 4e \rightarrow 2H_2O + O_2$ ecf is 0.4 - (-0.83) = 1.23 (1) - needs working shown) [2]
 - (c) (i) <u>no change</u> (because [H₂O] does not change) (1) smaller/less positive (1)
 - (ii) The (overall) $\underline{E^{\circ}}$ for CL production will decrease, (whereas that) for $\underline{O_2}$ production will stay the same. (answer could be in terms of 1st E° decreasing and becoming lower than 2nd)(or E° for CL becomes less than for O_2) (1) [3]
 - (d) (i) $Cl^{-} + 3H_2O \rightarrow ClO_3^{-} + 3H_2(1)$
 - (ii) $n(C) = 250 \times 60 \times 60 = (9 \times 10^5 C) (1)$ $n(e^-) = 9 \times 10^5/96500 = 9.33 mol$ $n(NaClO_3) = 9.33/6 = (1.55 mol) - allow ecf (1)$ $Mr(NaClO_3) = 106.5$ mass $(NaClO_3) = 1.55 \times 106.5 = 165.5 g (1) (165 - 166 gets 3 marks, 993 gets 2 marks$ as ecf) [4]

[Total: 11]

[2]

_	www.dynamicpap							aper	s.com	
	Pa	ige 5		Mark Scheme: Teachers' version Syllabus P					Paper	
				GCE A/AS I	LEVEL – Oct	ober/Nove	mber 2010	9701		43
6	(a)	(i)		gnore solvent,		edit A <i>l</i> C <i>l</i> ₃ or	HC <i>l</i> or light) (1)		
		(ii)		arrow from C= er one breakin		. (1)				
				ct intermediate	-	. ,	d (not Br $^{\delta-}$) (1)		[max 3]
	(b)	C is E is	S NC S C <i>l</i> C	$CH_2CH_2NH_2 (1)$ $H_2CH_2CN (1)$ DCH_2CH_2COCl $H_2)_2 or C_2H_4. A$	(1)	atoms in an	y order on L	HS but order	must b	[3] e correct on
		RH	S)							
	(c)			I: heat, dilute	· ·/	· ·/	· /		١	[2]
		rea	cuon	II: H ₂ + Ni (or	other named	catalyst) of		a in ethanoi (i)	[2]
	(d)	NH	4 ⁺ (1)							[1]
	(e)	(i)	(allo	$CH_2CH_2CH_2CH_2CH_2CH_2CH_2)_4$ and (C	CH ₂) ₂))			
		(ii)	HC1	1)						[2]
	(f)	(i)	[H⁺]	$= 10^{-pH} = 10^{-2.}$	⁶ = 2.51 × 1	0 ^{–3} (mol dm	⁻³) (1)			
		(ii)	Ka	$[H^+]^2/c = 6.3$	1 × 10 ^{−5} (mol	dm ⁻³) (allo	w ecf from (i))) (1)		[2]
										[Total: 13]
7	(a)	NH	$_2$ CH $_2$	$H_2CH_2NH_2 + H_2CH_2NH_3^+ Cl$ $H_2CH_2NH_3^+ Cl$ only, if Cl^- on	$l^- + HCl \rightarrow 0$	Cl [−] NH ₃ +CH	I2CH2CH2NH	l₃ ⁺ C <i>l</i> [−] (1)		[2]
	(b)			1.3 and finishe tions at 10 cm ³		volume add	ed (1)			[2]
							. /			[Total: 4]

_					www.	.dynamicpape	ers.com	
	Pa	ige 6	5	Mark Sche	eme: Teachers' version	Syllabus	Paper	
				GCE A/AS LEVE	EL – October/November 2010	9701	43	
8	(a)	(i) diagram to show tetrahedral arrangement (3D or bond angle marked) (1)						
		(ii)	4 co	valent bonds/bond p	air <u>s</u> (with C <i>l</i>) only or no lone pai	rs . (1)	[2]	
	(b)	(i)	(fum	,	<i>or</i> heat evolved (1) drolysis of Sn-C <i>l</i> bonds) <i>or</i> exothern t for HC <i>l</i> (<u>g)</u> in eqn.)	mic reaction/bond	breaking (1)	
		(ii)	SnC	$l_4 + 2H_2O \rightarrow SnO_2$	+ 4HC <i>l</i> etc. (allow partial hydrolys	is and with OHs)	(1) [3]	
							[Total: 5]	
9	(a) Sugar/deoxyribose, phosphate, base (or better)(<u>not</u> ribose) (1)					[1]		
	(b)	Dia	gram	showing sugar-phos	sphate backbone (chain) (1)			
				n side-chain (1) ired – A-T or G-C (1)				
		H-b	onds	shown and labelled	(1)		[4]	
	(c)	mR	RNA, r	ibosome, tRNA	all three correct (2) (mRNA first allow 1 mark)		[2]	
	(d)	(i)	(4 ×	4 × 4) = 64 (1)				
		(ii)		RT (or Met) – ser – a prrect order score (1	arg – leu – asp – val (2)))			
		(iii)	Amir	no acid leu is change	ed to pro (1)		[4]	
							[Total: 11]	

	www.uyhanicpapers.com				
Page 7	Mark Scheme: Teachers' version	Syllabus	Paper		
	GCE A/AS LEVEL – October/November 2010	9701	43		

www.dunamicnaners.com

- 10 (a) (i) Partition substance is distributed between the stationary and mobile phase or has different solubility in each phase (1)
 Adsorption substances form bonds of varying strength with or are attracted to or are held on to stationary phase. (1)
 - (ii)

Technique	Separation method
Paper chromatography	Partition
Thin-layer chromatography	Adsorption
Gas/liquid chromatography	Partition

 $\begin{array}{l} 3 \text{ correct } \rightarrow (2) \\ 2 \text{ correct } \rightarrow (1) \end{array}$

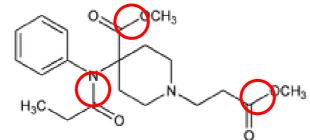
- (iii) %**X** = 44% (±2) %; %**Y** = 56% (±2%) (1)
- (b) (i) They are largely composed of (carbon and) hydrogen which are active in the NMR (owtte) *or* protons/H⁺/H exist in <u>different chemical environments</u> (with characteristic absorptions) (1)
 - (ii) 2 correct displayed formulae (1)

In propanone all the protons are in a similar chemical environment (and hence there will be one proton peak.) (1)

In propanal there are (three) <u>different chemical environments</u> and hence there will be (three) <u>proton peaks</u> or three different chemical environments or three proton peaks (1) [4]

[Total: 9]

[5]


		www.dynamicpapers.com			
Page 8	Page 8 Mark Scheme: Teachers' version		Paper		
	GCE A/AS LEVEL – October/November 2010	9701	43		

www.dunamicnaners.com

11 (a) Any **two** from:

The drug can be localised in a part of the body (1) Smaller doses can be given reducing cost (1) Smaller doses can be given with fewer possible side effects (1) More immediate action / acts faster (1)

(b)

(May circle whole functional group) Any 2 circles (2)

[2]

[2]

- (c) (i) Must not react with the drug *or* must not breakdown too easily/quickly (1)
 - (ii) The swelling/hydrolysis would begin in the stomach (and the drug would be released too soon) *or* stomach is acidic or has low pH (1) [2]
- (d) Addition, condensation (1)Suitable equation for addition (1)Suitable equation for condensation (1)

(Addition equation <u>must</u> show polymeristion <u>and</u> balance – allow $nX \rightarrow X_{2n}$ or X_n or $X_{n/2}$) (Condensation can be simple reaction e.g. to single ester or amide but must balance – 2 products)

(If polymerisation RHS must show a repeat unit but can leave out other product – HC*l* etc.) [3]

(e) Hydrolysis (1)

[1]

[Total: 11]