UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

VAUAUAU di	ynamicpap	ara aam
	///////////////////////////////////////	
	riaiiiiopap	0.00111

Page 2 Mark Scheme: Teachers' version		Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9701	23

1 (a) atoms of the same element / with same proton (atomic) number / same number of protons (1) different numbers of neutrons / nucleon number / mass number (1) [2]

(b)	

isotope	no. of protons	no. of neutrons	no. of electrons
²⁴ Mg	12	12	12
²⁶ Mg	12	14	12

each correct row (1)

(c)
$$A_r = \frac{24 \times 78.60 + 25 \times 10.11 + 26 \times 11.29}{100}$$
 (1)
= $\frac{1886.40 + 252.75 + 293.54}{100}$

gives 24.33 to 4 sig fig (same as data in question)

do not credit wrong number of sig figs or incorrect rounding up/down (1) [2]

(d) Mg +
$$Cl_2 \rightarrow MgCl_2(1)$$
 [1]
(e) (i) $n(Sb) = \frac{2.45}{122} = 0.020(1)$
(ii) mass of Cl in $A = 4.57 - 2.45 = 2.12 g(1)$
 $n(Cl) = \frac{4.57 - 2.45}{35.5} = \frac{2.12}{35.5} = 0.06$

allow ecf as appropriate (1)

35.5

(iii) Sb: Cl = 0.02: 0.06 = 1:3empirical formula of **A** is $SbCl_3(1)$

(iv)
$$2Sb + 3Cl_2 \rightarrow 2SbCl_3(1)$$

(f) (i) ionic (1)

(ii) covalent (1) not van der Waals' forces [2]

[Total: 14]

[2]

[5]

	www.	dynamicpape	ers.com
Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2010	9701	23
. ,	$O_2 \rightarrow SO_2(1)$ $O_2 + O_2 \rightleftharpoons 2SO_3$ equation (1)		
2 200	equilibrium sign (1)		
-	$\begin{array}{l} + \ H_2O \ \rightarrow \ H_2SO_4 \ \textbf{or} \\ + \ H_2SO_4 \ \rightarrow \ H_2S_2O_7 \ (1) \end{array}$		[4
(b) condition condition	 1 400 – 600 °C (650 – 900K) (1) 1 1–10 atm/just above atmospheric pressure allow equivalent pressure units (1) 		
conditior)	[3
lead/acid	s/phosphates/ammonium sulfate or d batteries or paints/pigments or dyestuffs or kling or metal treatment or detergents or explosives (1)	['
(d) (i) 2H ₂	$S + 3O_2 \rightarrow 2SO_2 + 2H_2O(1)$		
· · · =	-2 SO ₂ +4 S 0 all three (1) because the oxidation number of S is reduced (1)		[(
SO ₂ SO ₃	$P + O_2 \rightarrow 2NO_2 (1)$ + $NO_2 \rightarrow SO_3 + NO (1)$ + $H_2O \rightarrow H_2SO_4$ product must be $H_2SO_4 (1)$		
diss pollu	osion of buildings or olving of A <i>l</i> ³⁺ ions from soil or ution of rivers/killing aquatic life or ting soil acidic/killing trees/corrosion of metals (1)		[4
(f) it is a red	ducing agent/inhibits oxidation (1)		[′
			[Total: 16

Page 4	Page 4 Mark Scheme: Teachers' version		Paper
	GCE A/AS LEVEL – October/November 2010	9701	23

3 (a) (i) order of atoms must be C-C-O

linear (1)

- (ii) a molecule or atom with an unpaired electron or a species formed by the homolytic fission of a covalent bond (1)
- (iii) molecule has 2 bond pairs and one lone pair (1) and one unpaired electron (1) these may be shown in a diagram

(1)

(b) (i) H CN H CN | | | | -C-C-C-C-| | | | H H H H

allow the structural formula $-CH_2CH(CN)CH_2CH(CN)-(1)$

(ii) $O \\ H_2C \\ H_2C \\ H_2 \\ CH_2 \\ O \\ H_1 \\ H_1 \\ H_1 \\ H_1 \\ H_1 \\ O \\ (1)$ [2]

(d)

reagent	product
Br ₂ in an inert solvent	BrCH ₂ CHBrCHO
NaCN + dil. H_2SO_4	CH ₂ =CHCH(OH)CN allow CH ₂ =CHCH(OH)CO ₂ H
Tollens' reagent	$CH_2=CHCO_2H$ or $CH_2=CHCO_2^-$
NaBH ₄	CH ₂ =CHCH ₂ OH

(4 × 1) [4]

[Total: 13]

[5]

[2]

	www.dynamic			
	Page 5	Mark Scheme: Teachers' version GCE A/AS LEVEL – October/November 2010	Syllabus 9701	Paper 23
4	C ₃ H ₇ Br use of 12	$r = \frac{29.3}{12} : \frac{5.7}{1} : \frac{65.0}{79.9} (1)$ $= 2.44 : 5.7 : 0.81$ $= 3 : 7 : 1 (1)$ $= (3 \times 12) + (7 \times 1) + 79.9 = 122.9$ 22.9 or 123 to prove ar formula must be C ₃ H ₇ Br (1)	3701	[3]
	dipc	chanism must be S _N 2 ble on C-Br bond or		
	atta not	tral C atom shown with δ+ (1) ck on C atom by lone pair of OH [−] from negative charge (1) sition state formed with negative charge shown (1)		
	Br⁻∣	leaves/NaBr formed (1)		
		anol/C ₂ H ₅ OH (1)		
	(iv) elim	ination (1)		[7]
	(c) (i) HO-	H H H H CCCOH H H H H(1)		
	(ii) mus	st be skeletal or (1)		[2] [Total: 12]
5	(a) AgCl/sil∖	ver chloride (1)		[1]
	(b) white (1))		[1]
	(c) 1-iodobu	utane (1)		[1]
	(d) C-I bond	is weaker/longer than the other C-halogen bonds (1)		
		l energy is 240 kJ mol ⁻¹ ent radius of I is 0.133 nm (1)		[2]
				[Total: 5]