UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/21 Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	WWW.	www.dynamicpapers.com			
Page 2	Mark Scheme: Teachers' version	Syllabus	Paper		
	GCE A/AS LEVEL – October/November 2010	9701	21		

1 (a) the actual number of atoms of each element present (1)

in one molecule of a compound (1)

(b)
$$C_X H_Y + \left(x + \frac{y}{4}\right) O_2 \longrightarrow x CO_2 + \frac{y}{2} H_2 O$$

 $x CO_2(1)$
 $\frac{y}{2} H_2 O(1)$
[2]

(c) (i) oxygen/O₂(1)

_

- (ii) carbon dioxide/CO₂(1)
- (iii) 10 cm³ (1)
- (iv) $20 \text{ cm}^3(1)$ [4]

(d)
$$C_X H_y + (x + \frac{y}{4}) O_2 \longrightarrow x C O_2 + \frac{y}{2} H_2 O$$

10 cm³ 20 cm³ 10 cm³

1 mol of $C_x H_y$ gives 1 mol of CO_2

whence
$$x = 1$$
 (1)

1 mol of $C_x H_y$ reacts with 2 mol of O_2

whence
$$\left(x + \frac{y}{4}\right) = 2$$

and y = 4(1)

molecular formula is $CH_4(1)$

[3]

[2]

[Total: 11]

				www.dynamicpapers.com					
	Page 3		}	Mark Scheme: Teachers' version	Syllabus	Paper			
				GCE A/AS LEVEL – October/November 2010	9701	21			
2	(a)	N ₂	[1]						
	(b)	tem	perat	ure between 300 and 550°C (1)					
		cor rate							
		catalyst of iron or iron oxide (1)							
		to speed up reaction or to reduce $E_a(1)$							
	(c)	ma or e or i or a or a	[1]						
	(d)	fert							
		when plants and algae die O_2 is used up/fish or aquatic life die (1)				[2]			
	(e)	(i)	СО	by incomplete combustion of the hydrocarbon fuel	(1)				
			NO	by reaction between N_2 and O_2 in the engine (1)					
		(ii)	СО	toxic/effect on haemoglobin (1)					
			NO	toxic/formation of acid rain (1)		[4]			
	(f)	(i)	platir	num/Pt – allow palladium/Pd or rhodium/Rh (1)					
		(ii)	2CO	$+ 2NO \rightarrow 2CO_2 + N_2(1)$		[2]			
						[Total: 14]			

				WWW.	w.dynamicpapers.com		
	Page 4			Mark Scheme: Teachers' version	Syllabus	Paper	
		9701	21				
3	(a)	(i)	a co				
		(ii)	sepa	aration of compounds by their boiling points (1)		[2]	
			-				
	(b)	(i)	hiah	temperature and high pressure (1)			
	(b)	(i)	nığrı	temperature and high pressure (1)			
			high	temperature and catalyst (1)			
		(ii)	$C_{11}F$	$H_{24} \rightarrow C_5 H_{12} + C_6 H_{12}$ or			
			C11	$H_{24} \rightarrow C_5 H_{12} + 2 C_3 H_6$ or			
			•11.				
			C_{11}	$H_{24} \rightarrow C_5 H_{12} + 3 C_2 H_4 (1)$		[3]	

(c) (i)

CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	CH ₃ CH ₂ CHCH ₃ CH ₃	CH ₃ CH ₃ CCH ₃ CH ₃
isomer B	isomer C	isomer D
(1)	(1)	(1)

(ii) the straight chain isomer (isomer **B** above) (1)

it has the greatest van der Waals' forces (1)

because unbranched molecules have greater area of contact/ can pack more closely together (1)

[6]

(d) enthalpy change when 1 mol of a substance (1)

is burnt in an excess of oxygen/air under standard conditions or is completely combusted under standard conditions (1)

[2]

				1			w.dynamicp	
	Pa	Page 5				ne: Teachers' version – October/November 2010	Syllabus 9701	Paper 21
		GCE A/AS					9701	21
	(e)	(i)	heat	released =	m c δT = 2	200 x 4.18 x 27.5 (1)		
		(ii)	23.0	kJ produce	d from 0.4	7 g of E		
			2059	9 kJ produce	ed from $\frac{0.4}{-}$	47 x 2059 23.0 g of E (1)		
			= 42	2.08 g of E (1)			
			allov	v ecf in (i) or	[.] (ii) on ca	ndidate's expressions		[4]
	(f)	C₃⊦	I ₆ = ∠	42				
		E is	s C₃H₀	6				
		for	[1]					
								[Total: 18]
4	(a)	rea	ction	1 ı	reagent	NaOH/KOH (1)		
				5	solvent	H ₂ O/water/aqueous (1)		
		rea	ction	2 I	reagent	NH ₃ /ammonia (1)		
				\$	solvent	ethanol/C ₂ H ₅ OH/alcohol (1)		
		rea	ction	3 і	reagent	NaOH/KOH (1)		
				\$	solvent	ethanol/C₂H₅OH/alcohol (1)		[6]
	(b)) with $CH_3CH_2CH_2CH_2I$ rate would be faster (1)						
		C-I bond is weaker than C-Br bond (1)						
			C-I bond energy is 240 kJ mol ⁻¹ , C-Br bond energy is 280 kJ mol ⁻¹ data must be quoted for this mark (1)					[3]
	(c)	non	i-toxic	2	non-flar	mmable		
		vola	atile/lo	ow bp	unreact	ive (any 2)		[2]

			www.	www.dynamicpapers.com			
	Page 6		Mark Scheme: Teachers' version	Syllabus	Paper		
			GCE A/AS LEVEL – October/November 2010	9701	21		
	(d)	are	en a covalent bond breaks the two electrons in the bond shared between the two atoms (1) $l_2F_2 \rightarrow CClF_2 + Cl$ (as minimum)				
		allo	w $CCl_2F + F(1)$		[2]		
	(e)	they are	e flammable (1)		[1] [Total: 14]		
5	(a)	NaBr/sc	odium bromide		[1]		
	(b)	Br ₂ /bron	nine or SO_2 /sulfur dioxide		[1]		
	(c)	concent or	trated sulfuric acid is an oxidising agent				
		phospho	oric(V) acid is not an oxidising agent		[1]		
					[Total: 3]		