

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

	CANDIDATE NAME		
	CENTRE NUMBER		CANDIDATE NUMBER
* 2 7 4	CHEMISTRY		9701/21
	Paper 2 Structu	ured Questions AS Core	October/November 2009
ω			1 hour 15 minutes
8 4	Candidates ans	wer on the Question Paper.	
496	Additional Mate	rials: Data Booklet	

READ THESE INSTRUCTIONS FIRST

Write your name, Centre number and candidate number on all the work you hand in. Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs, or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. DO NOT WRITE ON ANY BARCODES.

Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units. A Data Booklet is provided.

The number of marks is given in brackets [] at the end of each question or part question. At the end of the examination, fasten all your work securely together.

For Examiner's Use		
1		
2		
3		
4		
5		
Total		

This document consists of **11** printed pages and **1** blank page.

Answer all the questions in the spaces provided.	For
Magnesium, Mg, and radium, Ra, are elements in Group II of the Periodic Table.	Examiner's Use
Magnesium has three isotopes.	
(a) Explain the meaning of the term <i>isotope</i> .	
[2]	

A sample of magnesium has the following isotopic composition by mass.

isotope mass	24	25	26
% by mass	78.60	10.11	11.29

(b) Calculate the relative atomic mass, A_r , of magnesium to **four** significant figures.

A_r =[2]

1

For Examiner's

Use

[3]

Radium, proton number 88, and uranium, proton number 92, are radioactive elements.

The isotope ²²⁶Ra is produced by the radioactive decay of the uranium isotope ²³⁸U.

(c) Complete the table below to show the atomic structures of the isotopes $^{226}\mathrm{Ra}$ and $^{238}\mathrm{U.}$

	number of		
isotopes	protons	neutrons	electrons
²²⁶ Ra			
²³⁸ U			

(d) Radium, like other Group II elements, forms a number of ionic compounds.

(i) What is the formula of the radium cation?

.....

(ii) Use the *Data Booklet* to suggest a value for the energy required to form one mole of the gaseous radium cation you have given in (i) from one mole of gaseous radium atoms. Explain your answer.

[3]

[Total: 10]

2 Radium was discovered in the ore pitchblende by Marie and Pierre Curie in 1898, and the metal was first isolated by them in 1910. Examiner's

The metal was obtained by first reacting the radium present in the pitchblende to form insoluble radium sulfate which was converted into aqueous radium bromide. This solution was then electrolysed using a mercury cathode and a carbon anode.

- (a) Radium has chemical reactions that are typical of Group II metals and forms ionic compounds.
 - What is the characteristic feature of the electronic configurations of all Group II (i) metals?

(ii) Radium sulfate is extremely insoluble. From your knowledge of the simple salts of Group II metals, suggest another very insoluble radium salt.

.....

[2]

For

Use

(b) During their electrolysis of aqueous radium bromide, the Curies obtained radium at the cathode and bromine at the anode.

Write half-equations for the two electrode reactions that take place during this electrolysis.

	ano	de	•••
	cath	ode[2	2]
(c)	(i)	Describe what you would see when magnesium reacts with	
		cold water,	
		steam.	
	(ii)	Write an equation for the reaction with steam.	
		17	 51
		L ⁱ	-

(d)	Rad	ium reacts vigorously when added to water.	For
	(i)	Write an equation, with state symbols, for this reaction.	Examiners Use
	(ii)	State two observations that could be made during this reaction.	
((iii)	Suggest the approximate pH of the resulting solution.	
((iv)	Will the reaction be more or less vigorous than the reaction of barium with water?	
		Explain your answer.	
		[6]	
		[Total: 15]	

3 Alkanes such as methane, CH₄, undergo few chemical reactions. Methane will, however, react with chlorine but not with iodine.

For Examiner's Use

Relevant standard enthalpy changes of formation for the reaction of methane with chlorine to form chloromethane, CH_3Cl , are given below.

	$\Delta H_{\rm f}^{\rm o}/{\rm kJ}~{\rm mol}^{-1}$
CH ₄	-75
CH ₃ Cl	-82
HC1	-92

(a) (i) Use the data to calculate $\Delta H^{\oplus}_{reaction}$ for the formation of CH₃Cl.

 $CH_4 + Cl_2 \rightarrow CH_3Cl + HCl$

(ii) The corresponding reaction with iodine does not take place.

Use bond energy data from the *Data Booklet* to calculate a 'theoretical value' for $\Delta H_{\text{reaction}}$ for the following equation.

 $CH_4 + I_2 \rightarrow CH_3I + HI$

(iii) Suggest why this reaction does not in fact occur.

[5]

For

Use

(b) (i) By using equations, describe the mechanism of the reaction between chlorine and methane to form chloromethane, CH₃Cl. Examiner's Identify, by name, the separate steps of the overall reaction. (ii) What is the intermediate organic species in this reaction? [7] (c) The energy of activation for the formation of CH_3Cl is 16 kJ mol⁻¹. Use this figure and your answer to (a)(i) to complete the reaction pathway diagram below showing the formation of CH_3Cl from CH_4 and Cl_2 . Show clearly the intermediate organic species and the final products. Indicate on your sketch the relevant enthalpy changes and their values. enthalpy $CH_4 + Cl_2$ progress of reaction [4] [Total: 16]

- The structural formulae of six different compounds, A F, are given below. For Each compound contains four carbon atoms in its molecule. Examiner's Use CH₃CH=CHCH₃ CH₃CH₂COCH₃ CH₂=CHCH₂CH₃ В Α С $\mathsf{CH}_3\mathsf{CH}_2\mathsf{CH}(\mathsf{OH})\mathsf{CH}_3 \qquad \qquad \mathsf{HOCH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2\mathsf{OH} \qquad \qquad \mathsf{CH}_3\mathsf{CH}_2\mathsf{OCH}_2\mathsf{CH}_3$ D F Ε (a) (i) What is the empirical formula of compound E?
 - (ii) Draw the skeletal formula of compound **D**.

(iii) Structural formulae do not show all of the isomers that may exist for a given molecular formula. Which **two** compounds **each** show **different** types of isomerism and what type of isomerism does each compound show? Identify each compound by its letter.

compound	type of isomerism

[4]

[3]

Compound **D** may be converted into compound **C**.

(b) (i) What type of reaction is this?

.....

(ii) What reagent would you use for this reaction?

.....

(iii) What is formed when compound **E** undergoes the same reaction using an excess of the same reagent?

.....

4

Compound A may be converted into compound B in a two-stage reaction.	For
$CH_3CH=CHCH_3 \xrightarrow{\text{stage I}} \text{intermediate} \xrightarrow{\text{stage II}} CH_3CH_2COCH_3$	Use
(c) (i) What is the structural formula of the intermediate compound formed in sequence?	this
(ii) Outline how stage I may be carried out to give this intermediate compound.	
(iii) What reagent would be used for stage II?	
(d) Compounds D and F are isomers.	[4]
What type of isomerism do they show?	
	[1]
[Tota	al: 12]

- 10
- 5 Three organic compounds, **G**, **H**, and **J**, each have the empirical formula CH_2O . The numbers of carbon atoms in their molecules are shown in the table.

compound	number of C atoms
G	1
н	2
J	3

In ${\bf H}$ and in ${\bf J},$ the carbon atoms are bonded directly to one another.

G gives a silver mirror when treated with Tollens' reagent.

H and **J** each give a brisk effervescence with $Na_2CO_3(aq)$.

(a) Identify G.

.....

(b) (i) What functional group is common to both H and J?

.....

(ii) Identify H.

.....

(iii) Identify J.

.....

(c) When **J** is heated under reflux with acidified K₂Cr₂O₇, the product, **K**, gives a red-orange precipitate with 2,4-dinitrophenylhydrazine reagent.

Draw the structural formula of **K**, the compound formed from **J**.

[1]

[1]

[3]

For Examiner's Use

- (d) When J is warmed with concentrated sulfuric acid, a cyclic compound, L, is formed. ${\rm L}$ has the molecular formula ${\rm C_6H_8O_4}.$ Examiner's
 - (i) Suggest a displayed formula for L.

(ii) What type of reaction occurs when L is formed from J?

.....

[2]

For

Use

[Total: 7]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.