UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/22 Paper 22 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2		<u> </u>	Mark Seheme: Teachara' warsian	/namicpape		
Pa	ge 2		Mark Scheme: Teachers' version GCE A/AS LEVEL – October/November 2009	Syllabus 9701		per 2
(a)	CO van SiO	$\frac{1}{2}$ has in der W 0_2 is gia	nple molecular/simple covalent/has discrete molecules nduced dipole – induced dipole interactions/ Vaals' forces/weak intermolecular forces ant molecular/giant covalent/macromolecular strong covalent bonds		(1) (1) (1) (1)	[any 3]
. ,	min i.e.	imum i	is 4-valent Si-O and at least one Si-O-Si O Si O O		(1) (1)	
			 Si			[2
(c)	(i)	the m there betwe collisi the m the m the m the m the kin direct the pr betwe	in ideal gas, any four from the following nolecules behave as rigid spheres are no/negligible intermolecular forces een the molecules ions between the molecules are perfectly elastic nolecules have no/negligible volume nolecules move in random motion nolecules move in straight lines inetic energy of the molecules is tly proportional to the temperature ressure exerted by the gas is due to the collisions een the gas molecules and the walls of the container in ideal gas obeys $pV = nRT$	(m	 (1) 	
	(ii)		are intermolecular forces between CO ₂ molecules/ molecules have volume		(1)	[5
(d)	gra	phite h	nas delocalised electrons		(1)	[1
(e)	(i)		+ 2C \rightarrow SiC + CO ₂ or + 3C \rightarrow SiC + 2CO		(1)	
	(ii)	diamo	ond because SiC is hard		(1)	[2

	WWW.	.dynamicpap	ers.com
Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2009	9701	22

2 (a) (i)

formula o	NaC1	MgCl ₂	AlCl ₃	SiC14	PCl ₃	SCl ₂		
oxidation	+1	+2	+3	+4	+3	+2		
	correct oxidation nos. for NaCl to S				((1)		
(ii)	Na to A1 loss of outer/valence electrons to give configuration of Ne/to complete octet Si to S					(
	gain or sharing of outer electrons to give configuration of Ar/to complete octet						(1) (1)	
(b) (i)	giant lattice (may be in diagram) with strong ionic bonding				(1) (1)			
(ii)	ionic					(1)		
(iii)	-1					((1)	
(iv)	+ – :Na: [×] .H							
	correct numbers of electrons correct charges						(1) (1)	

(v)

compound	MgH_2	A <i>t</i> H ₃	PH_3	H_2S
oxidation number of element in the hydride	+2	+3	-3	-2

correct oxidation nos. for MgH_2 and AlH_3 correct oxidation nos. for PH_3 and H_2S

(c) (i)

(iii) 10–14

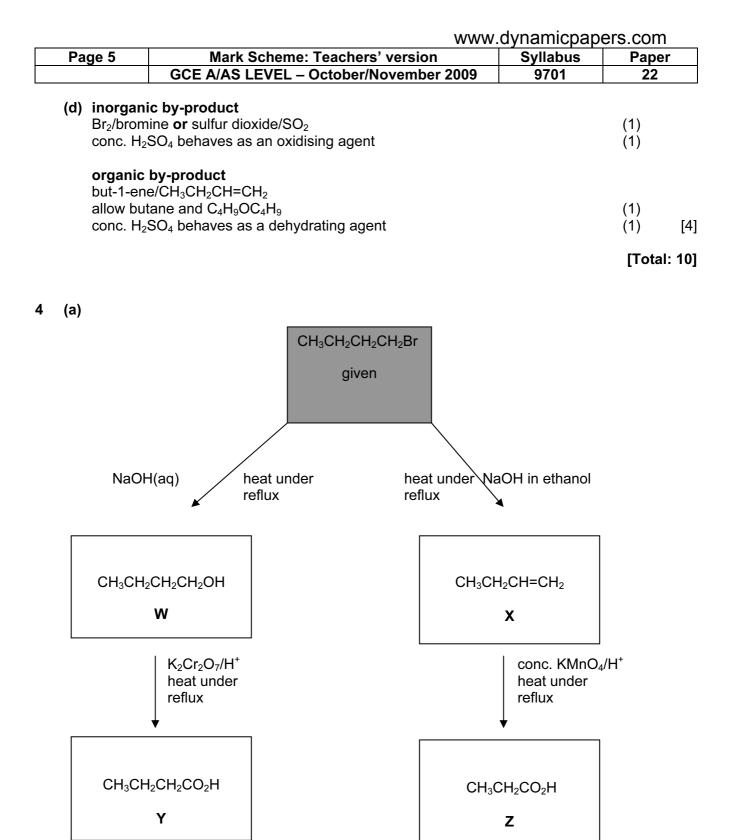
chloride	sodium	magnesium	aluminium
pН	7	6.5–6.9	1–4
	(no mark)	(1)	(1)

(1)

(1)

(1) (1)

[8]


[4]

Page 4	Mark Scheme: Teachers' version	dynamicpap Syllabus	Pape	
	GCE A/AS LEVEL – October/November 2009	9701	22	
(d) (i) cov	alent		(1)	
(ii) SiC	$l_4 + 4H_2O \rightarrow Si(OH)_4 + 4HCl \text{ or}$			
	$l_4 + 4H_2O \rightarrow SiO_2.2H_2O + 4HCl$ or			10
SiC	$l_4 + 2H_2O \rightarrow SiO_2 + 4HCl$		(1)	[2
			[Tota	al: 19
(a) stage l	NaBr + H ₂ SO ₄ \rightarrow NaHSO ₄ + HBr			
allo stage II	w 2NaBr + $H_2SO_4 \rightarrow Na_2SO_4 + 2HBr$ $C_4H_9OH + HBr \rightarrow C_4H_9Br + H_2O$		(1) (1)	[2
stage ii			(1)	Ľ
(b) <i>n</i> (NaBr	$= n(\text{HBr}) = \frac{35}{103} = 0.34$		(1)	
	100			
<i>n</i> (C ₄ H ₉ 0	$DH) = \frac{20}{74} = 0.27$		(1)	
NaBr/H	Br is in an excess – no mark just for this answer			[2
(c) method	I 1, using mass			
	$\mathbf{H} \equiv \mathbf{C}_{4}\mathbf{H}_{9}\mathbf{B}\mathbf{r}$			
-	s 100%,			
-	H ₉ OH → 137 g C ₄ H ₉ Br 137 × 15 4			
15.4 g (C_4H_9OH would produce $\frac{137 \times 15.4}{74} = 28.5 \text{ g } C_4H_9Br$		(1)	
	$=\frac{22.5\times100}{28.5} = 78.9$		(1)	
,	28.5			
or met	nods using moles			
metho				
n(C.H.	$(200) = \frac{15.4}{200} = 0.208$			

 $n(C_{4}H_{9}OH) = \frac{15.4}{74} = 0.208$ for 100% yield n(C_{4}H_{9}Br) would be 0.208 × 137 = 28.5g (1) % yield = $\frac{22.5 \times 100}{28.5} = 78.9$ (1)

method 3

$n(C_4H_9OH) = \frac{15.4}{74} = 0.208 \text{ mol}$		
for 100% yield n(C₄H₀Br) would be 0.208 mol		
actual n(C ₄ H ₉ Br) = $\frac{22.5}{137}$ = 0.164 mol	(1)	
% yield = $\frac{0.164 \times 100}{0.208}$ = 78.8	(1)	[2]

(4 × 1) [4]

Page 6	Mark Scheme: Teachers' version	.dynamicpap Syllabus	Pape	
0	GCE A/AS LEVEL – October/November 2009	9701	22	
(b) (i) X allov (ii)	w ecf on any alkene above C ₂ H ₅ H C ₂ H ₅ H C C C H H H H		(1)	
allov	<i>w</i> ecf on any alkene above		(1)	[2]
				tal: 6]
(a) 2,4-diniti	rophenylhydrazine or aqueous alkaline iodine		(1)	
yellow-o	↓ range-red ppt. yellow ppt.		(1)	[2]
-				-
• •	ss gas evolved or Na dissolves		(1)	C 1
С ₄ П ₉ ОП	+ Na \rightarrow C ₄ H ₉ ONa + $\frac{1}{2}$ H ₂		(1)	[2
(c) (i) CH₃	CH ₂ CH ₂ CH ₂ CH ₂ OH		(1)	
(ii)				
	H H H OH H 			
	$\begin{array}{cccccc} H & H & H & OH & H \\ & & & & & & \\ H - C - C - C - C - C - C - H \\ & & & & \\ H & H & H & H \end{array}$			
	пппп			
(iii)	ОН			
	\bigvee		(1)	[3
(d) (i) pent	tan-2-ol		(1)	
			(•)	
(ii)				
	CH ₃ CH ₂ CH=CHCH ₃ CH ₃ CH ₂ CH ₂ CH=C	H ₂		
	product 1 product 2			

(1 + 1) [3]

		dynamicpap	ers.com	<u>ו</u>		
Page 7	Mark Scheme: Teachers' version			Syllabus	Pape	er
	GCE A/AS LEVE	L – Octo	ber/November 2009	9701	22	
(e) (i) H₃C	СН ₃ С—С—СН ₂ ОН СН ₃					
	$C\Pi_3$	or	$CH_3C(CH_3)_2CH_2OH$		(1)	
(ii)	CH₃ │					
H₃C	CH₃ C—C—CO₂H CH₃	or	CH ₃ C(CH ₃) ₂ CO ₂ H			
allo	w ecf on (e)(i)				(1)	[2]
					[Tota	l: 12]