UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2008 question paper

9701 CHEMISTRY

9701/04

Paper 4 (Theory 2), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9701	04

(ii) 158:160:162 =1:2:1 [1] 79:81 =1:1

(b) (i) *either* BrCH₂CHBr-CHO *or* CH₂=CH-CH₂OH (double bond needed) [1]

(ii) reaction I: Br₂(aq or in CCl₄ etc.), light negates – solvent not needed [1] reaction II: NaBH₄ or H₂/Ni etc. (but not if **A** is CH₂=CH-CH₂OH) allow LiA lH₄ or Na/ethanol [1] (reactions can be reversed)

(c) (i) $C_3H_6OBr_2 = 216$, 218 and 220 (any one) [1]

(ii) 31 CH₂OH⁺/CH₃O⁺ is $C_2H_3^{79}Br^+$ $C_2H_3^{81}Br^+$ $C_2H_3^{79}Br_2^+$ 106 is 108 is 185 ignore missing charges is $C_2H_3^{79}Br^{81}Br^+$ 187 6 correct [4] is $C_2H_3^{81}Br_2^{+}$ 189 5 correct [3] etc is

if no mass numbers given – [1] only [4]

[Total: 13 max 12]

2 (a) solution will turn brown/purple

[1]

(b) table:

case	а	b	С
1	1	1	0
2	1	1	1
3	1	2	2

each horizontal row scores [1]

if no marks scored, a correct vertical row can score [1]

[3 max]

(c) rate = $6.5-7.5 \times 10^{-6}$ [1] units are mol dm⁻³ s⁻¹

(d) half-life measured and quoted as $\cong 90-94$ s evidence of two half-lives measured [1]

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9701	04

(e) lines 1 and 2: as $[H_2O_2]$ increases by 0.07/0.05 = 1.4, so does rate so order w.r.t. $[H_2O_2] = 1$ [1] lines 1 and 3: increase in rate (1.8) is also the increase in [H₂O₂], so rate is **independent** of [H⁺] (*or* zero order) [1] a description can be accepted here if both orders are correct but no working/explanation given score [1] (f) the first step/or the relevant equation [1] [Total: 11] 3 (a) (i) carbonates become more stable down the Group/higher decomposition temperature [1] cation/M²⁺ radius/size increases down the group/M²⁺ charge density decreases [1] anion/carbonate ion/CO₃²⁻ suffers less polarisation/distortion [1] (ii) ionic radii quoted: Ca²⁺: 0.099 nm Zn²⁺: 0.074 nm Pb²⁺: 0.120 nm [1] thus we expect ZnCO₃ to be less stable, but PbCO₃ to be more stable [1] if candidate states PbCO₃ is more stable than ZnCO₃ (or converse) with no reference to CaCO₃ give [1] as salvage. **(b) (i)** Cu = 57.7/63.5 = 0.91 ratios correct scores [1] O = 36.2/16= 2.26 C = 5.4/12= 0.45 H = 0.9/10.90 hence Cu₂O₅CH₂ [1] (ii) $Cu^{2+}(aq)$ or $[Cu(H_2O)_6]^{2+}$ NOT $[Cu(H_2O)_4]^{2+}$ [1] (iii) **D** is CuO / copper(II) oxide [1] $Cu_2O_5CH_2 \longrightarrow 2CuO + CO_2 + H_2O$ [1] $(M_r s)$ [1] .: 10 \longrightarrow 10 × 159/221 = 7.2 g (7.19) if candidate thinks only CO₂ is lost, answer will be 8.0 g [1] (iv) E is copper; F is Fe²⁺ / Fe SO₄ [1] Fe + Cu^{2+} \longrightarrow Fe²⁺ + Cu (or molecular) [1] (v) redox/displacement [1]

[Total: 19]

[1]

[1]

[1]

deep blue is $[Cu(NH_3)_4]^{2+}$ (allow $[Cu(NH_3)_4(H_2O)_2]^{2+}$ NOT $[Cu(NH_3)_6]^{2+}$

(vi) blue ppt./solid formed

blue ppt. is $Cu(OH)_2(s)$

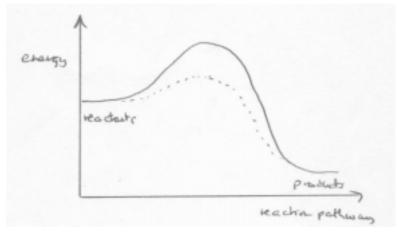
(dissolves to give) dark blue/purple colour

Paper

Syllabus

	Page	4	Mark Scheme	Syllabus	Paper
			GCE A/AS LEVEL – October/November 2008	9701	04
4	(a) (i	i) CH ₂ :	=CH–CH ₂ CH ₂ CH ₃ accept C ₃ H ₇ on RHS		[1]
	(ii	i) 8			[1]
	(b) (i	i) e.g.	$C_{40}H_{82} \longrightarrow C_{16}H_{34} + 2 C_{12}H_{24} \text{ OR } C_{24}H_{48}$		[1]
	(ii		: + catalysts/SiO ₂ /A <i>l</i> ₂ O ₃ /Pt/ceramic/pumice/zeolite etc mp given >500°C		[1]
	(iii		ds broken: $4(C-C) = 4 \times 350 = 1400 \text{ kJ}$ d formed: $2(C=C) = 2 \times 610 = 1220 \text{ kJ}$ $\therefore \Delta H = +180 \text{ kg}$ eqn in (i): +90 kJ mol ⁻¹ for each C=C formed (could	κJ mol ^{−1}	[1] 0)
	(iv) endo	othermic reactions ∆H > 0		[1]
					[Total: 6]
5			tromethylbenzene trophenylethanoic acid		[1] [1]
	(b) st	tep II:	Cl_2 + light <i>or</i> heat (T~100 °C) (A lCl_3 or aq. r	negates)	[1]
	st	tep III:	KCN (in ethanol) + heat (T~75°C) (HCN negates	s)	[1]
	st	tep V:	Sn or Fe + HCl (+ heat)		[1]
					[Total: 5]
6			aqueous iodine (NaOH/ I_2) (allow NaOI) vellow ppt; K gives no reaction		[1] [1]
			bromine / Cu ²⁺ aq / diazotisation with phenol no change; M decolourises/gives white ppt.		[1]
	W	ith Cu ²	to change, M decolourises/gives write ppt. * L goes blue, M goes green totisation L gives no reaction, M a coloured compound	d	[1]
	0	r add A N gi [,] r add N N gi [,] r add al	vater (zes/gives off steamy fumes; P has no reaction gNO ₃ (aq) (ves rapid ppt.; P gives ppt. very slowly H ₃ /RNH ₂ (ves off fumes; P has no reaction (cohol/phenol) oduces sweet-smelling liquid, P gives no reaction		[1] [1] [1] [1] [1] [1] [1]
	` '		al Indicator solution/litmus s no change; R will turn solution blue (alkaline)		[1] [1]
					[Total: 8]

Mark Scheme


Page 4

Page 5	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9701	04

- 7 (a) protein: polymer of amino acids / amino acids are monomers. [1]
 - (b) diagram of at least two amino acids joining by the loss of water [1] at least one peptide bond drawn out in full [1] correct formula of the tripeptide [1]
 - (c) acid/H⁺/HC1 etc. or alkali/OH⁻/NaOH NOT conc H₂SO₄ or any HNO₃ [1] heat/boil/reflux if temp given >90 °C [1]
 - (d) (i) six [1]
 - (ii) $M_r = 3 \times 75 + 2 \times 89 + 2 \times 165 6 \times 18$ [1] = **625** [1] (allow [1] for $M_r = 733$) (also ecf from (i))

[Total: 9]

8 (a) (i)

dotted line must start and end at same points

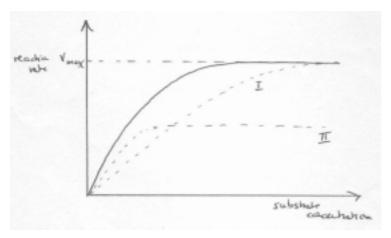
[1]

(ii) protein/polypeptide NOT polymer/polyamide

[1]

(iii) they are denatured/lose their 2°/3° structure/or H-bonds/vdW

[1]


(b) (i) competitive inhibitor resembles the substrate OR competes for the active site of the enzyme

[1]

non-competitive inhibitor can bind to a different site on the enzyme OR forms a covalent bond/bonds permanently with the enzyme [1]

Page 6	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9701	04

(ii)

mark for each line NB lines must cross to score mark for II

 $[2 \times 1]$

(c) (i) -S-H groups (allow sulphide/S/cysteine residue)

[1]

[1]

[1]

(ii) this inhibits/reduces/decreases the enzyme activity/stops normal function the bonding disrupts the 3-dimensional structure of the enzyme

[Total: 10]

9 (a) (i) cut DNA into sections / fragments / minisatellites

(ii) these undergo electrophoresis OR are placed on agarose gel

[1]

[1]

(iii) radioactive phosphorus / 32P OR darkens photographic film

- [1]
- (b) (i) NMR can be done in solution / in vivo / shows labile protons / shows positions of protons and/or carbon atoms [1] X-ray crystallography shows the positions of most atoms in structure / allows

measurement of bond length

[1]

- (ii) different types of tissue have protons in different chemical environments / tumour and healthy tissue absorb differently / allow at different frequencies [1]
- (c) (i) M: M+1 = 48: 1.7

$$x = 100 \times 1.7 = 3.2$$
 hence there are 3 carbon atoms in the compound [1] 1.1 × 48 NB if calculation shown 1.1 divisor MUST be present

since the compound has an m/e of 73 and contains 3 carbon atoms, 1 nitrogen atom and 1 oxygen atom, y = 73 - (36 + 14 + 16) = 7[1]

(ii) the NMR spectrum shows a quartet, triplet pattern characteristic of an ethyl group [1] the other broad peak must be due to N-H protons [1]

thus the structure of the compound is likely to be CH₃CH₂CONH₂

[1]

[Total: 11 max 10]

Page 7	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – October/November 2008	9701	04

10

(a) (i)	silkworm – hydrogen bonds spider – van der Waals' OR hydrogen bonds	[1] [1]
(ii)	spider silk is more elastic/flexible/less rigid than silkworm silk/has a lower density silkworm silk absorbs water more easily	[1] [1]
(iii)	this increases the elasticity/hydrophobic nature of the silk	[1]
(b) (i)	a polymer formed with the elimination/formation of a small molecule (or example)	[1]
(ii)	any addition polymer e.g. poly(ethene), PVC, etc.	[1]
(iii)	3 from: addition polymers have a limited range of bonds/monomers addition polymers are non-polar/have fewer/no H-bonds condensation polymers/proteins have a range of combinations of amino acids which a wide range of properties condensation polymers/proteins have more functional groups/sidechains different sequences of amino acids result in different 2°/3° structure	[1] [1] give [1] [1]

[Total: 12 max 10]