UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2007 question paper

9701 CHEMISTRY

9701/04

Paper 4 (Theory 2), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

				www.dynamicpapers.com				
	Page 2			Mark Scheme	Syllabus	Paper		
				GCE A/AS LEVEL – October/November 2007	9701	04		
1	(a)	(i)	K _a =	[H ⁺][RCO ₂ [−]]/[RCO ₂ H]		[1]		
		(ii)	p <i>K</i> a :	$= -\log_{10}K_a \text{ or } -\log K_a \text{ or } \log [H^+]^2 / [RCO_2H] \text{ NOT } ln;$		[1] [2]		
	(b)	(i)	acid due stabi	strength <u>increases</u> from no. 1 to no. 3 <i>or</i> down the tab to the electron-withdrawing effect/electronegativity of c ilising the anion <i>or</i> weakening the O-H bond NOT H ⁺ m	le <i>or</i> as C <i>l</i> s incre hlorine (atoms) nore available	ease [1] [1] [1]		
	(ii) chlorine atom is further away (from O-H) in no. 4, so has less influence					[1]		
		(iii)	<i>eithe</i> ([1] f	er: $pH = \frac{1}{2} (pK_a - \log_{10}[acid])$ or $K_a = 10^{-pKa} = 1.259$ $= \frac{1}{2} (4.9 + 2)$ $[H^{+}] = \sqrt{(K_a. c)} = 3.5$ = 3.4 (allow 3.5) $pH = 3.4or correct expression & values; [1] for correct working)$	x 10 ⁻³ 55 x 10 ⁻⁴	[1] ecf [1]		
						[6]		
	(c)	(i)	cata	lyst		[1]		
		(ii)	CH ₃	$CH_2CO_2H + Cl_2 \longrightarrow CH_2CHClCO_2H + HCl$		[1]		
		(iii)	nucl	eophilic substitution NOT addition/elimination		[1]		
		(iv)	M _r (0	$CH_3CH_2CO_2H) = 74$ $M_r(CH_2CH(NH_2)CO_2H) = 89$		[1]		
	∴ 10.0 g should give 10 x 89/74 = 12.03 g ∴ percentage yield = 100 x 9.5/12.03 = 79% ([2] for c					ecf [1] orrect answer) [5]		
	(d)	⁺ N⊦ Allo	H₃-CH ow cha	$(CH_3)-CO_2^-$ arges on H of H ₃ N, and –COO but not –C-O-O	co corre	rrect atoms [1] ect charges [1] [2]		

[Total: 15]

				www.	dynamicpa	pers.com
	Pag	ge 3	Mark So	cheme	Syllabus	Paper
			GCE A/AS LEVEL – Oc	tober/November 2007	9701	04
2	(a)	solubilit lattice e solvatio but mor ΔH_{soln} be	y decreases (down Group II) energy decreases n/hydration energy (of cation re so than does lattice energy ecomes more endothermic/po)) decreases //is not able to overcome L ositive/less exothermic	E	[1] [1] [1] [1] [1] [max 4]
	(b)	identitie Mg(OH)	es of A and B) ₂ + H ₂ C ₂ O ₄ \longrightarrow MgC ₂ O ₄ (A)	(aq) + 2H ₂ O		2 x [1] [1]
		MgC ₂ O	$_{4}(aq) + Ca(NO_{3})_{2} \longrightarrow Mg$	$(NO_3)_2 + CaC_2O_4(s)$		[1]
				(B)		[max 3]
	(c)	(i) (K _{si} unit	₀ =) [Mg ²⁺][OH [−]]² ts are <u>mol³dm^{−9}</u>			[1] ecf from K _{sp} [1]
		(ii) (ca	II [Mg(OH)₂(aq)] = [Mg ²⁺] = x)	$\therefore K_{sp} = 2 \times 10^{-11} = 4x^3$		[1]
				∴ x = 1.71 x 10 ⁻⁴ mol dn	1 ⁻³	ecf [1]
	('iii) less	s soluble because of the com	mon ion effect		

or the equilibrium $Mg(OH)_2(s) \Rightarrow Mg^{2+}(aq) + 2OH^{-}(aq)$ is moved to the left [1] [5] [Total: 12]

Page 4		ne 4	Mark Sch	eme	Syllabus	Paper
		90 .	GCE A/AS LEVEL – Octo	ber/November 2007	9701	04
3	(a)	K = 22.4 Cr = 29. C <i>l</i> = 20. O = 27.5 [1]	/39.1 = 0.573 thus ra 8/52.0 = 0.573 3/35.5 = 0.572 5/16.0 = 1.719	tio is: 1 1 1 3 <i>or</i> KCrC <i>l</i> O₃ [1]	(scores 2)	[2]
	(b)	K ₂ Cr ₂ O ₇	+ 2HC $l \longrightarrow 2$ KCrC l O ₃ + H	I ₂ O		[1] [1]
	(c)	(i) reda	ox <i>or</i> oxidation			[1]
		(ii) $E^{\circ} c c$ $Cr_2 C$ Cl_2 ove	ata and half equations: $D_7^{2^-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3^+} + 2e^- \longrightarrow 2Ct^-$ rall ionic equation: $D_7^{2^-} + 6Ct^- + 14H^+ \longrightarrow 2Cr^-$	$-7H_2O$ $E^{e} = 1.33 V$ $E^{e} = 1.36 V$ $^{3+} + 3Ch + 7H_2O$		[1] [1]
			$D_7 + 0Cl + 14\Pi \longrightarrow 2Cl$	$+ 30l_2 + 7 \Pi_2 O$		[1]
		(iii) (dilu or lo	tion will) lower E ^e for Cr ₂ O ₇ ^{2–} /C ower [C <i>โ</i> ⁻] <i>or</i> [H ⁺] will shift equili	r ³⁺ <i>or</i> raise E ^e for C <i>l</i> ₂/Cl brium in eqn to the left h	nand side J	[1]
		(iv) Br ₂ /	Br [–] = +1.07 V, so Cr(VI) would	oxidise Br⁻ (easily)		[1] [6] [Total: 9]

		WWW	.dynamicpap	ers.com
	Page 5	Mark Scheme	Syllabus	Paper
		GCE A/AS LEVEL – October/November 2007	9701	04
4	(a) CC <i>l</i> 4 i no d-c e.g. S (<i>or</i> Ge	s unreactive. (The rest react (with increasing vigour)) prbitals <i>or</i> available/low-lying empty orbitals in carbon <i>or</i> is iC $l_4 + 2H_2O \longrightarrow SiO_2 + 4HCl$ eC l_4 etc) <i>or</i> Si(OH) ₂ C l_2 <i>or</i> Si(OH) ₄ (allow balanced equations for partial)	unable to expand	[1] d octet [1]
			nyuloiy3i3)	[3]
	(b) (i) E ∴	$(Cl-Cl) = 244 \text{ kJ mol}^{-1};$ 2 E(C-Cl) = 2 x 340 = 680 kJ r $\Delta H = -436 \text{ (kJ mol}^{-1})$	nol ⁻¹	[1]
	(ii) A	H = 359 – 329 = +30 (kJ mol ⁻¹)		[1]
	() =			
	(iii) s o	ince reaction (ii) is endothermic, the +4 oxidation state is r the +2 oxidation state is more stable (down the group)	less stable	[1]
				[Total: 6]
5	(a) 2 Mn(D_4^- + 5 H_2O_2 + 6 $H^+ \longrightarrow 2 Mn^{2+}$ + 8 H_2O + 5 O_2		[1] [1]
				[4]
	(b) E _{cell} =	1.52 - 0.68 = +0.84 (V)		[1] [1]
				[.]
				_
	(c) (i) (a	as KMnO ₄ is added), colour changed (from purple) to colour α_4	ourless – <i>NOT</i> pi	nk [1]
	a	t end-point, change is to (first) pink		[1]
		, , , , , , , , , , , , , , , , , , ,		
	(ii) n	$(MnO_4^{-}) = 0.02 \times 15/1000 = 3 \times 10^{-4}$		[1]
	s =	$\Rightarrow n(H_2O_2) = (5/2) \times 3 \times 10^{-4} = 7.5 \times 10^{-4} \text{ in } 25 \text{ cm}^3$		
	:	$[H_2O_2] = 7.5 \times 10^{-4} \times 1000/25 = 3.0 \times 10^{-2} \text{ mol dm}^{-3}$		[1]
				[4]
				[i otal: 6]

		www	.dynamicpap	ers.com	
Page 6		Mark Scheme	Syllabus	Paper	
		GCE A/AS LEVEL – October/November 2007	9701	04	
6	(a) (i)	C is $O^{-}Na^{+}$ allow ONa but no covalent O-Na bo	ond	[1]	
	(ii)	amide, ester		2 x [1]	
	(iii)	CO ₂ or H ₂ CO ₃ or Na ₂ CO ₃ CH ₃ NH ₂ or CH ₃ NH ₃ ⁺ C t		[1] [1]	
				[1]	
	(iv)	H_3O^+ and heat >80° <i>or</i> OH ⁻ (aq) and heat >80°		[1] [7]	
	(b) (i)	Br ₂ (aq) (or other suitable solvent)		[1]	
	(ii)	dilute/aqueous HNO ₃		[1] [2]	
	(c) (i)	D is		[1]	
	(ii)	tin/Fe + HC <i>l NOT</i> LiA <i>l</i> H ₄		[1]	
	(iii)	MHCOCH ₃ mark each side chain separately		2 x [1] [4]	
	(d) (i)	(allow any orientation of groups) H_2O H_2O H_2O H_2		[1]	
	(ii)	$[Cu(NH_3)_4]^{2+}$ or $[Cu(NH_3)_4(H_2O)_2]^{2+}$ NOT $[Cu(NH_3)_6]^{2+}$		[1]	
	(iii)	ligand substitution/exchange	ſ	[1] [3] [3] Total: max	

© UCLES 2007

	Daga 7	Mark Sahama	Syllabus	Demor
-	rage /	GCF A/AS I EVEL – October/November 2007	9701	
7	(a) HNO ₃ + at 50 – 6	H_2SO_4 $0^{\circ}C$ (<i>or</i> \leq 60°C) not dilute or (aq)		[1] [1] [2]
	(b) 2H ₂ SO ₄ (allow e	+ HNO ₃ \longrightarrow 2HSO ₄ ⁻ + H ₃ O ⁺ + NO ₂ ⁺ qu. with only one H ₂ SO ₄ , giving H ₂ O)		[1] [1]
	(c)	CH ₃	ÇO₂H	
	G is	H is	\bigcirc	[1] + [1]
	reaction reaction reaction	I: $Cl_2 + AlCl_3$ /accept other halogen carriers <i>NOT</i> a II: KMnO ₄ + H ⁺ <i>NOT</i> HC <i>l nor</i> HNO ₃ III: KMnO ₄ + H ⁺ <i>NOT</i> HC <i>l nor</i> HNO ₃	q, <i>nor</i> u.v.	[1]'[1
	reaction	IV: $Cl_2 + AlCl_3/accept$ other halogen carriers <i>NOT</i> a	q, <i>nor</i> u.v.	<u>both</u> I + IV [1] <u>both</u> II + III [1] [4]

[Total: 7]

	~~~ ()	R A	lark Sahama		Syllabua	Donor
Pa	age d)		iark Scheme	or 2007	0701	
			GCE A/AS LEVEI			5701	04
8 (a)) (i)	Two	nterlinked spirals or	chains <i>or</i> strands wov	en round ea	ich other	[1]
	(ii)	By h	drogen bonds betwe	een bases			[1] [2]
(b)) Tra	inscrip	tion – (1)DNA/RNA/ – (2)strand is us – (3)mRNA rea	/nucleic acid unravels sed as a template ds the sequence on th	is strand/		[1] [1]
			produces c	complementary strand			[1]
	Tra	inslati	n – (4)mRNA bind – (5)tRNA trans – (6)tRNA carrie	ds to the ribosome slates the codon from r es amino acids to ribos	mRNA some/adds :	a.a. to chain	[1] [1] [1]
							[max 4]
(c)) (i)	Disr (cou	ption of the seconda d be answered in ter	ary/tertiary/quaternary/3	3D structure	of the protein	
		(000			ogen benae	broany	[1]
	(ii)	The	ovalent/peptide bon	ds in the (protein) cha	in are too st	rong	[1] [2]
(d)) En AT AT	ərgy is P (+ F P is p	provided by the brea $_{2}O) \rightarrow ADP + P_{i}$ (+ oduced during respir	akdown/hydrolysis of a + energy) or in words ration/Krebs cycle/oxid	adenosine tr ation of gluo	iphosphate (ATP) cose, fats or protein	[1] [1]

[Total: 11]

				www.dynamicpapers.				
	Page 9			Mark Scheme	Syllabus	Paper		
				GCE A/AS LEVEL – October/November 2007	9701	04		
9	(a)	Suitable diagram showing origin of two energy states/or description Needs to mention applied magnetic field/electron transfer negates Indication that energy difference is in the radio frequency range						
		Indication that frequency of absorption <i>or</i> gap between the 2 energy states depends on the nature of nearby atoms <i>or</i> the chemical environment of the ¹ H						
	(b)	They do not damage tissues/X-rays harmful/NMR of lower energy They are not obscured by bones/skeleton						
			[max 2]					
	(c)	(i)	M : I	M+1 = 100/(1.1n)				
			n = - Che	$\frac{0.66 \times 200}{14.5 \times 1.1} = \frac{66}{15.95} = 4.14 = 4 \text{ carbon atoms}$ ck for 1.1 in divisor, if missing, penalise		[1]		
		(ii)	Sing Qua (allo	let at δ 2 suggests methyl adjacent to C=O rtet at δ 4 suggests a –CH ₂ - group (adjacent to a –met w –OCH ₂ -)	hyl group)	[1] [1]		
			Triplet at	et at δ 1.2 suggests a methyl group (adjacent to a –CF ethyl ethanoate (or structure)/if methyl propanoate giv	l₂–) en here	[1]		
			canr	not score first marking point		[1] [5]		

[Total: 10]

			www.dynamicpaper					
	Pag	ge 10		Mark Scheme	Syllabus	Paper		
				GCE A/AS LEVEL – October/November 2007	9701	04		
10	(a)	Iron	is hi	gher in the reactivity series than copper (owtte)/allow ι	ise of E ^e	[1]		
		Cu ²⁺ (aq) + Fe(s) → Cu(s) + Fe ²⁺ (aq) If conversion to Fe ³⁺ given, E _{cell} is –0.38						
	(b)	lt do	es n	ot require investment in machinery/labour		[1]		
		lt red	quire	es little energy		[1]		
		acce Do <u>r</u>	ept it <u>not</u> a	produces little/no pollution/noise ccept comparison with electrolytic method		[1] [max 2]		
	(c)	The	proc	ess takes a long time/requires smaller workforce		[1] [1]		
	(d)	(i)	0.75	% is 7.5 kg in every tonne of ore				
			Hen or 1,	ce 150,000 tonnes of ore yield $\frac{7.5 \times 150000}{1000}$ tonnes 125 tonnes Cu				
			1125	5 x 0.6 = 675 tonnes (accept 680)		[1]		
		(ii)	450 or 1 ⁻	x 0.17 = 76.5 tonnes (accept 77) 125 x 0.17 = 191.25 tonnes (accept 191) – this is an ec	cf if 675 not in (i)	[1] [2]		
	(e)	e) Aluminium is too high in the reactivity series/very reactive/aluminium forms bonds with oxygen which are too strong/aluminium ore doesn't exist as sulphid		inium forms exist as sulphide				
		/Fe unable to displace Al						
	(f)	Con	trol t	he pH (<i>greater</i> than pH 6.0) diation/growth of special plants (to remove beavy meta	uls)	[1]		
		Othe	er rea	asonable suggestions such as displacement by a more tion/ion exchange	e reactive metal/	[1]		
			[2] [Total: 9]					