	Candidate Number	Name	ww.dynamicpape	15.0011
UNIVER	SITY OF CAMBRIDG General Cer Advanced Subsidiar	tificate of Education	on	
CHEMISTRY		,	9701/0)3
Paper 3 Pra	ctical Test	C	October/November 20	005
	swer on the Question Pap rials: as listed in the Instr		1 hour 15 minut	tes
READ THESE INSTRU	ICTIONS FIRST			
You may use a soft per Do not use staples, pap Answer all questions. The number of marks is You are advised to shor Use of a Data Booklet is	ack pen in the spaces pro- ncil for any diagrams, grap per clips, highlighters, glue s given in brackets [] at th w all working in calculation s unnecessary. tes are printed on pages 6	ohs or rough working. or correction fluid. ne end of each questions.		
			SESS	
				SION
			LABOR	
			LABOR/ For Exami	ATORY
				ATORY
			For Exami	ATORY

For Examiner's Use

1 FA 1 is an aqueous solution containing 38.10 g dm^{-3} of borax crystals. Borax is disodium tetraborate-*x*-water, Na₂B₄O₇.*x*H₂O. **FA 2** is 1.00 mol dm⁻³ HC*l*.

You are required to find the number of moles of water of crystallisation, \boldsymbol{x} , in the borax crystals.

Disodium tetraborate reacts with hydrochloric acid according to the equation below.

 $Na_2B_4O_7(aq) + 2HCl(aq) + 5H_2O(l) \rightarrow 2NaCl(aq) + 4H_3BO_3(aq)$

(a) Use a burette to measure between 44.50 cm³ and 45.50 cm³ of FA 2 into the 250 cm³ volumetric (graduated) flask labelled FA 3. Record your burette readings in Table 1.1.

Table 1.1 Dilution of FA 2

final burette reading	/ cm ³	
initial burette reading	/ cm ³	
volume of FA 2 used	/ cm ³	

Fill the flask to the 250 cm^3 mark with distilled or deionised water and mix the contents thoroughly by shaking. This solution is **FA 3**.

Fill the second burette with the diluted hydrochloric acid, FA 3.

(b) Pipette 25.0 cm³ of **FA 1** into a conical flask and add a few drops of the indicator provided. Titrate the contents of the conical flask with **FA 3** until the appropriate colour change is observed at the end-point.

Repeat the titration as many times as you think necessary to obtain accurate results.

Make certain that the recorded results show the precision of your practical work.

Table 1.2 Titration of FA 1 with FA 3

The indicator used was

final burette reading/cm ³		
initial burette reading/cm ³		
volume of FA 3 used/cm ³		

Summary

 25.0 cm^3 of **FA 1** reacted with cm³ of **FA 3**.

Show which results you used to obtain this volume of **FA 3** by placing a tick (\checkmark) under the readings in Table 1.2.

You are advised to show full working in all parts of the calculations.

- (c) Calculate the concentration, in mol dm⁻³, of hydrochloric acid in the diluted solution **FA 3**.
 - [1]

For Examiner's Use

(d) Calculate how many moles of hydrochloric acid were run from the burette into the conical flask during the titration of FA 1 with FA 3.

[1]

(e) Calculate the concentration, in mol dm^{-3} , of the disodium tetraborate in FA 1.

$$\mathrm{Na_2B_4O_7(aq)}~+~2\mathrm{HCl\,(aq)}~+~5\mathrm{H_2O(I)}~\rightarrow~2\mathrm{NaCl(aq)}~+~4\mathrm{H_3BO_3(aq)}$$

(f) Calculate the concentration, in $g dm^{-3}$, of disodium tetraborate, Na₂B₄O₇, in **FA 1**. [*A*_r: Na, 23.0; B, 10.8; O, 16.0.]

[2]

[2]

(g) FA 1 contains 38.10 g dm⁻³ of borax crystals, Na₂B₄O₇.*x*H₂O. Use this information and your answer to (f) to calculate the mass of water present in the dissolved crystals.

[1]

(h) Calculate the number of moles of water present in 38.10 g of borax crystals.

Use this answer and the answer to (e) to calculate the value of x in Na₂B₄O₇.xH₂O.

For Examiner's Use

2 FA 4 contains **one cation** from those listed on page 6.

FA 4 also contains **one anion** but this is not an ion listed on page 7.

By performing the tests below, you should be able to identify the cation and to draw a further conclusion as to the nature of **FA 4**.

In all tests, the reagent should be added gradually until no further change is observed, with shaking after each addition.

Record your observations in the spaces provided.

Your answers should include

• details of colour changes and precipitates formed,

• the names of gases evolved and details of the test used to identify each one.

You should indicate clearly at what stage in a test a change occurs.

Marks are **not** given for chemical equations.

No additional or confirmatory tests for ions present should be attempted.

Candidates are reminded that definite deductions may be made from tests where there appears to be no reaction.

	Test	Observations [6]
(a)	Transfer two thirds of the solid FA 4 to a boiling-tube and add about 7 cm depth of dilute nitric acid. Cautiously warm the tube until the orange colour of the solid is no longer visible. Filter the mixture and retain filtrate for further tests. Wash the residue with water and retain residue for further tests.	
(b)	Transfer the remaining solid FA 4 to a hard glass test-tube and heat strongly. Identify, with a suitable test, the gas evolved.	
Tes	ts on the filtrate	
(c)	To 1 cm depth of the filtrate from (a) in a test-tube, add aqueous sodium hydroxide until there is no further change.	
(d)	To 1 cm depth of the filtrate from (a) in a test-tube, add aqueous ammonia until there is no further change.	

www.dynamicpapers.com

For
Examiner's
Use

	Test	Observations
(e)	To 1 cm depth of the filtrate from (a) in a test-tube, add aqueous potassium iodide.	
Tes	ts on residue	
(f)	Cautiously place 1 cm depth of concentrated hydrochloric acid into a boiling-tube and add an equal volume of water.	
	Add to the tube some of the residue from (a) and warm gently. Identify, with a suitable test, the gas evolved.	
	Immediately the gas is identified rinse the contents of the tube into the sink.	
pres	the information in the Qualitative Analysis ent in FA 4 . The cation present in FA 4 is	
pres	ent in FA 4 .	
pres	ent in FA 4 . The cation present in FA 4 is Give two pieces of evidence that support yo	
pres	ent in FA 4 . The cation present in FA 4 is Give two pieces of evidence that support yo	our choice of this ion. [2]
pres	ent in FA 4 . The cation present in FA 4 is Give two pieces of evidence that support yo	our choice of this ion. [2]
pres	ent in FA 4 . The cation present in FA 4 is Give two pieces of evidence that support yo	our choice of this ion. [2]

QUALITATIVE ANALYSIS NOTES

[Key: ppt. = precipitate]

1 Reactions of aqueous cations

ion	reaction	with
1011	NaOH(aq)	NH ₃ (aq)
aluminium,	white ppt.	white ppt.
A <i>l</i> ³⁺ (aq)	soluble in excess	insoluble in excess
ammonium, NH ₄ +(aq)	ammonia produced on heating	
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess
copper(II),	pale blue ppt.	blue ppt. soluble in excess
Cu ²⁺ (aq)	insoluble in excess	giving dark blue solution
iron(II),	green ppt.	green ppt.
Fe ²⁺ (aq)	insoluble in excess	insoluble in excess
iron(III),	red-brown ppt.	red-brown ppt.
Fe ³⁺ (aq)	insoluble in excess	insoluble in excess
lead(II),	white ppt.	white ppt.
Pb ²⁺ (aq)	soluble in excess	insoluble in excess
magnesium,	white ppt.	white ppt.
Mg ²⁺ (aq)	insoluble in excess	insoluble in excess
manganese(II),	off-white ppt.	off-white ppt.
Mn ²⁺ (aq)	insoluble in excess	insoluble in excess
zinc,	white ppt.	white ppt.
Zn ²⁺ (aq)	soluble in excess	soluble in excess

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chromate(VI), CrO ₄ ^{2–} (aq)	yellow solution turns orange with H ⁺ (aq); gives yellow ppt. with Ba ²⁺ (aq); gives bright yellow ppt. with Pb ²⁺ (aq)
chloride, C <i>l</i> [–] (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
bromide, Br [–] (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
iodide, I⁻(aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq)); gives yellow ppt. with Pb ²⁺ (aq)
nitrate, NO ₃ [–] (aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil
nitrite, NO ₂ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil, NO liberated by dilute acids (colourless NO \rightarrow (pale) brown NO ₂ in air)
sulphate, SO ₄ ^{2–} (aq)	gives white ppt. with Ba ²⁺ (aq) or with Pb ²⁺ (aq) (insoluble in excess dilute strong acid)
sulphite, SO ₃ ^{2–} (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acid)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint
sulphur dioxide, SO ₂	turns potassium dichromate(VI) (aq) from orange to green

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.