UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the November 2005 question paper

9701 CHEMISTRY

9701/04

Paper 4 (Structured Questions A2 Core), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	2		Mark Sche	me		Syllabus Paper	
		GCE	A LEVEL - Nov	vember 2005		9701 4	
1 (a)	M _r (A	gBr) = 108 + 79.9	= 187.9				[1
	mole	$s = 2.5 \times 10^{-12}/187$					
	no. o	f ions = 1.33 x 10	$x^{-14} \times 6 \times 10^{23} = 3$	3.0 x 10⁹ ions	(correct	ans = [2])	[1
							2
(b)	(i)	A : platinum B : H⁺(aq) <i>or</i> HC <i>i</i> (ac (ignore concentration	q) <i>or</i> H ₂ SO ₄ (aq) on)	C: voltmeter D: silver (wire))		4 x [1
	(ii)	(As [Ag⁺] decrease	s), the potential	will decrease/be	come mor	e negative	[1
	(iii)	K _{sp} = [Ag ⁺][Br ⁻]	$= (7.1 \times 10^{-7})^2$	= 5.0 (41) x 10 ⁻	¹³ mol ² dm	n ⁻⁶	[1
						uni	ts [1
							7
(c)	(i)	Ag⁺(g) + Br⁻(g) —	→ AgBr(s)				[1
	(ii)	LE	=	$\Delta H_{ m f}$ - (all the r	est)		
			=	-100 – (731 +	285 + 112	- 325)	
			(=	-100 - 731 - 28	35 - 112 +	325)	
			=	-903 kJ mol ⁻¹	(-[1] for e	each error of sign or maths)	[2
	(iii)	LE(<i>AgCl</i>) should be due to size/radius o	e higher/more ne of C l being less t	gative, than that of Br ⁻ (both)		[1
							4
(d)	more	e energy needed, s	ince $r_{Cl} < r_{Br}$ or	ionised electron	nearer to	nucleus	
	or les	ss shielding etc. o	r in terms of I.E.	(C <i>l</i>) > I.E.(Br)			

P	ade (3	Mark Scheme	Syllabus	Paper				
-	aye	5	GCE A LEVEL – November 2005	9701	4				
2	(a)	The EMF of a cell made up of the test electrode and a standard hydrogen electrode. (<i>or</i> the EMF of the electrode compared to the S.H.E.)							
		EMF measured under standard conditions of T, (P) and concentration. (<i>or</i> at 298K and 1 mol dm ⁻³)							
	(b)	The stronge	The stronger the halogen is as an oxidising agent, the more positive is its E^{e} value.						
		Two examp	les of F_2/F^- , Cl_2/Cl ; Br_2/Br^- , I_2/I^- quoted						
		(data:	$F_2/F^- = +2.87V$ $Cl_2/Cl = +1.36V$ $Br_2/Br^- = +1.07V$						
			$I_2/I = +0.54V$)						
	(c)	(i) or	$\begin{array}{rcl} H_2O_2 \ + \ 2I^{\scriptscriptstyle -} \ + \ 2H^{\scriptscriptstyle +} & \longrightarrow & I_2 \ + \ 2H_2O \\ H_2O_2 \ + \ 2KI \ + \ 2H^{\scriptscriptstyle +} & \longrightarrow & 2K^{\scriptscriptstyle +} \ + \ I_2 \ + \ 2H_2 \end{array}$	0					
				E ^e = 1.77 - 0.54 =	1.23 ∨				
		(ii) or	$Cl_2 + SO_2 + 2H_2O \longrightarrow 2Cl^- + SO_4^{2-}$ $Cl_2 + SO_2 + 2H_2O \longrightarrow 2HCl + H_2SO_4$	+ 4H ⁺					
				E ^e = 1.36 – 0.17 =	[:] 1.19 ∨				
	(d)	(d) since $E^{e}(I_2/I^{-})$ is +0.54V, tin will be oxidised to Sn^{4+} (E^{e} for $Sn^{2+}/Sn = -0.14V$ and E^{e} for $Sn^{4}/Sn^{2} = +0.15V$)							
		Thus: S	$n + 2I_2 \longrightarrow SnI_4$						

WWW.dynamicpaper				
Page 4		Mark Scheme	Syllabus	Paper
3 (a) ((i) r	nelting point: graph showing (Si (+ Ge): medium) and C: higher than Si/Ge Sn + Pb: lower than Si/Ge		-
	(conductivity: graph showing (Si (+ Ge): medium) and C: lower (or higher!) than Si/G Sn + Pb: higher than Si/Ge	е	
	[for your information, the actual figures are shown below]		
((ii) (ii) (ii) (ii) (ii) (ii) (ii) (ii)	Sn, Pb (and C(graphite)) have delocalised electrons/metallic Si, Ge (and C(diamond)) have localised electrons/covalent b [for [2] marks carbon has to be mentioned onc	bonds onds æ, and the allotrop	be mentioned
		must in in with the conductivity snownj		
(b) (b) (i) e.g. CO burns to give $CO_2 [2CO + O_2 \longrightarrow 2CO_2]$ or CO reduces $Fe_2O_3 [3CO + Fe_2O_3 \longrightarrow 3CO_2 + 2Fe]$			
((ii) e	e.g. PbO₂ decomposes on heating [2PbO₂ → 2PbO + 0 two valid examples two balanced equati [two valid and balance]	D₂] ons ced equations war	[1] + rrants [3] mark
(c) ι	use:	oottery/china/porcelain etc + property: hardness, high meltin (any one use + one relevant property)	g point, insulator e	etc.
(d) ((i) a	amphoteric		
((ii) e	e.g. SnO + 2HC $l \longrightarrow$ SnC l_2 + H ₂ O		
	e	e.g. SnO + 2NaOH \longrightarrow Na ₂ SnO ₂ + H ₂ O		

(Actual figures for (a) (i):)

element	m.pt./°C	conductivity
C(graph)	3652	2 x 10 ³
C(dia)	3550	1 x 10 ⁻¹⁵
Si	1410	2 x 10 ⁻²
Ge	937	2 x 10 ⁻²
Sn	232	9 x 10⁴
Pb	328	5 x 10⁴

Page 5			Mark S	cheme	Syllabus	Paper
		GCE	A LEVEL –	November 2005	9701	4
4 (a)) HC (<i>or</i>	$D-C_6H_4-NH_2 + 2AgBr C_6H_7NO)$	+ 20H ⁻ →	$O = C_6 H_4 = O + H_2 O + N_6 (or C_6 H_4 O_2)$	H ₃ + 2Ag + 2Br ⁻	[1
(b)) roc	linol should be less ba	asic than N	H ₃		[1
	be	ecause the lone pair on N is delocalised over/overlaps with the aryl ring				
(c)) E i	$H_2N-C_6H_4-O^-Na^+$	or	H ₂ N-C ₆ H ₄ -ONa		[1
	Fi	s HO-C ₆ H ₄ NH ₃ ⁺ C l	or	HO-C ₆ H ₄ NH ₃ Cl		[1
	G	s HO-C ₆ H ₂ Br ₂ -NH ₂	up to	HO-C ₆ Br ₄ -NH ₂ (ignore of	rientation)	[1
(d) (i)	HNO ₃ (aq) or dil HNO	D ₃	(NOT conc., and NOT +	conc. H ₂ SO ₄)	[1
	(ii)	reduction				[1
	(iii) Sn + HC <i>l</i> (aq)				[1
(e)) (i)	phenol, amide				[1] + [1
	(ii)	CH_3COCl or (CH_3)	CO) ₂ O			[1
						total: 1

	www.dynamicpaper					
I	Page	6	Mark Scheme Syllabus			Paper
			GCE A LEVEL – No	ovember 2005	9701	4
5	(a)	(i)	addition (polymerisation)			[1]
		(ii)	condensation (polymerisation)			[1]
						2
	(b)	hyd	ogen bonding			[1]
						1
	(c)	(i)	HO ₂ CCH ₂ CH ₂ CO ₂ H			[1]
		(ii)	ester (accep	t "covalent")		[1]
						2
	(d)	(i)	heat with H_3O^+ or heat with $OH^-(a_1)$	q)		[1]
		(ii)	H ₂ N-CH ₂ -CH(OH)-CH ₂ -NH ₂ o	$H_3N^+-CH_2-CH(OH)-CH_2-N_3N^+$	${\rm IH_3}^+$	[1]
			HO ₂ C-CH(OH)-CH(OH)-CO ₂ H or	⁻ O ₂ C-CH(OH)-CH(OH)-CC	D_2^{-1}	[1]
			(allow bonus mark if the acid/bashydrolysis)	se forms are consistent with	the reagent us	ed for the [1]
						4 max 3
	(e)	(i)	$NC-CH_2-CO_2^-K^+$			[1]
		(ii)	II: H ₂ + Ni <i>or</i> Na in ethanol [allow	w LiA <i>1</i> H ₄]		[1]
			III: dilute HCl or H_2SO_4 or $H^+(aq)$)		[1]
						3