UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Level

MARK SCHEME for the November 2004 question paper

9701 CHEMISTRY

9701/04

Paper 4 (Structured Questions A2 Core), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 9701 (Chemistry) in the November 2004 examination.

	maximum	minimum	mark required	for grade:
	mark available	А	В	Е
Component 4	60	44	39	22

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

November 2004

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9701/04

CHEMISTRY
Paper 4 (Structured Questions A2 Core)

\ \\\\\\\	dyna	ımıcnar	pers.com
VV VV VV .	UVIIC	111110001	JCI J. GUIII

Page 1			rk Scheme - NOVEMBER 2004		Syllabus 9701	Paper 4	•
l (a) (i)	strong, bed	cause final pH is				[1]
(ii) (pH = 0.70	\Rightarrow [H ⁺] = 10 ^{-0.7}	= 0.20 (mol dm ⁻³))		[1	1]
		∴ [H ₂ SO ₄]	= (0.10 mol dm ⁻³))		ecf [1	1]
(ii	i) (end point	is at 34.0 cm³ (:	± 0.5 cm ³), so)				
	amoun	t of H [⁺] used	= 0.2 x 25/1000	= 0.0050 r	mol ecf froi	m (ii) [1]
	moles	of guanidine	= moles of H ⁺	= 0.0050 r	mol		
	[guanio	line]	= 0.005 x 1000/3	4.0 = 0.14	7 (mol dm ⁻³)	[1]
			allow range: 0.14	15 – 0.149	ecf in 0.005 or	34.0	
(iv	/) M _r	= 8.68/0.147	= 59 (allow range	9 58 – 60)	ecf fron	n (iii) [1]
(b) (i)		→ 7 CaSO ₄	+ 3 Ca(H ₂ PO ₄) ₂ +	2 HF		[1]
(ii) M _r values:	Ca(H ₂ PO ₄) ₂	= 234.1,	$H_2SO_4 =$	98.0	[1]
		234.1 x 3	= 702.3	98 x 7 =	686	both [1	11

:. mass of H_2SO_4 needed = 1.0 x 686/702.3 = **0.98** kg [1]

(correct answer = [3] marks. accurate value is: 0.977 kg. Allow ecf from incorrect M_r or incorrect multipliers)

(c) (i) A solution that **resists** changes in pH [NOT: results in **no** pH change] [1]

when **small amounts** of H⁺ or OH⁻ are added [1]

(ii) pH =
$$-\log_{10}(6.3 \times 10^{-8}) + \log_{10}(0.1/0.2) = 6.9$$
 [1]

or
$$[H^+]$$
 = $(6.3 \times 10^{-8}) \times 0.2/0.1$ = 1.26×10^{-7}

$$\therefore pH = -\log_{10}(1.26 \times 10^{-7}) = 6.9$$

2 (a) $O_2 + 4H^+ + 4e^ \longrightarrow$ $2H_2O$ (or equation ÷ 2)

[1] 1

Total 13

4

(b) ⊕ [1] 1

(c) 1.23 (V) (ignore sign) [1] 1

(d) a better/larger salt bridge or a diaphragm or larger (area of) electrodes

or increase concentrations/pressure [1] 1

www.dynamicpapers.com

Syllabus

	Pa	ge 2			Mark Sche		0004		abus	Р	<u>aper</u>	
				A LEV	EL – NOVE	MBER	2004	97	01		4	
	(e)	time = 400	0 x 24 x	60 x 60 = 34	560 000 se	econds	3				[1]	
		charge = c	current	time = 0.01	x 34 560 0	00 = 3	45 600 C		6	ecf	[1]	
		moles of H	H = 345	600/96 500 =	= 3.6 mol		∴ mass of H = 3.6	g	€	ecf	[1]	3
	(f)	advantage	es:	less pollutio	n/CO ₂ /NO _x	etc. o	r cleaner by-produ	cts				
				less depend	lence on fo	ssil fue	els/finite resources		any o	ne	[1]	
		disadvanta	ages:	more expen	sive (to dev	velop d	or to run)					
				takes up mo	ore space							
				poor power-	to-volume	ratio						
				hydrogen is	difficult to s	store o	r to transport		any o	ne	[1]	
				NOT hydrog	gen is explo	sive/fl	ammable					2
											Tota	I 9
3	sol	ubilities de	crease	down the gro	oup						[1]	
	hy	dration ene	ergy of tl	e cation dec	reases						[1]	
	lati	tice energy	stays tl	e same, or d	lecreases le	ess tha	an H.E.				[1]	
	ma	aking ∆H _{solut}	_{tion} more	endothermic	c <i>or</i> H.E. no	longe	er able to overcome	e -L.E.			[1]	4
											Tota	I 4
4	(a)	an elemer	nt formii	g one or mo	re ions with	a par	tially filled/incomple	ete d-s	shell		[1]	1
	(b)	(i) almost	t no cha	nge (allow <i>sl</i>	<i>light</i> increas	se or s	light decrease)				[1]	
		(ii) density	y should	increase							[1]	
		becau	se A _r is	increasing bu	ut size/volu	me/rad	dius stays the sam	е			[1]	
							(allow p	artial e	ecf froi	m b	(i))	3
	(c)	30	d ⁹								[1]	1
(d)	(i)	an ion forr	med wh				a (central metal) o	ation			[1]	
	(ii)			H ₂ Q ₂ H ₂ O ▼	OH ₂ Cu	OH ₂	2+					

Mark Scheme

Page 2

www.dynamicpapers.com

Page 3	Mark Scheme	Syllabus	Paper
	A LEVEL – NOVEMBER 2004	9701	4

(e) (i) dark/deep/navy/royal/Oxford blue *or* purple [NOT Prussian blue or lilac or mauve] [1]

(ii)
$$4NH_3 + [Cu(H_2O)_6]^{2+}$$
 $[Cu(NH_3)_4(H_2O)_2]^{2+} + 4H_2O$

or
$$\longrightarrow$$
 [Cu(NH₃)₄]²⁺ + 6H₂O [1] 2

(f)
$$CuCl_4^{2-}$$
 is produced [1]

the equilibrium is **reversible**
$$or \Rightarrow$$
 in equation [1]

$$Cl^-$$
 ligands replace/exchange with H_2O ligands (in words) [1]

(the following equation is worth the first two marks)

(c) (i) C > B > A (i.e. a mark in the penultimate box)

$$[Cu(H_2O)6]^{2+} + 4Cl^- \Rightarrow [CuCl_4]^{2-} + 6H_2O$$

Total 12

1

[1]

(b)
$$SOC l_2/PC l_3/PC l_5$$
 [aq negates] [1]

(ii) (acyl chloride fastest) highly
$$\delta$$
 + carbon atom joined to 2 electronegative atoms

(aryl chloride slowest) delocalisation of lone pair over ring ⇒ stronger C-Cl bond

[1]

	www.uynamicpapers						
Pag	e 4		Mark Scheme		Syllabus	Paper	
		A LE	EVEL – NOVEMBER 2004		9701	4	
(d)	C_6H_5	-CO ₂ C ₆ H ₅	C ₆ H ₅ -CONHCH ₃	C ₆ H ₅ -	CO₂H		

OR

3

Total 9

6 (a) (i) E [1]

(ii) $CH_3CH_2CO_2^-(Na^+)$ [NOT $C_3H_7COO-Na$ or C_3H_7COOH] [1]

[but allow CH₃CH₂CH₂CO₂Na]

[1]

 CHl_3 or name [1] 3

(b) the alcohol from E has four different groups around a carbon atom [1]

∴ it is chiral/asymmetric *or* it is produced as a 50:50 mixture of mirror images [1]

or its mirror images are non-superimposable

[1]

formulae: [1]

the alcohol from **D** has 2 identical groups on its central carbon atom [1]

4 max 3

Total 6

7 (a) orange colour disappears/bromine is decolourised (NOT discoloured, or goes clear)

[1]

(white) precipitate/solid/crystals is formed [1] 2

www.dynamicpapers.com

Page 5	Mark Scheme	Sy	llabus	Paper
	A LEVEL – NOVEMBER 2004	9	701	4

(b) add neutral FeCl₃ (aq) – violet colour with phenol e.g. add universal indicator - red/orange colour with phenol or add Na metal – fizzing/H₂ evolved with phenol or add NaOH(aq) to the pure compound - phenol would dissolve or or add H⁺ (aq) to the pure compound – phenylamine would dissolve add HNO₂ at room temperature – phenylamine would produce gaseous N₂. or add HNO₂ at 5 °C, followed by an alkaline solution of phenol – phenylamine or would produce a coloured (orange) dye [1] 1 (c) IV KMnO₄ + heat [1] (both) conc^d and at 50 °C < T < 60 °C ٧ $HNO_3 + H_2SO_4$ [1] [1] VI Sn + HCl (NOT LiAlH₄) [1] 4