

NOVEMBER 2002

GCE Advanced Level

MAXIMUM MARK: 40 SYLLABUS/COMPONENT: 9701/6 CHEMISTRY (OPTIONS (A2))

Biochemistry

1. (a) (i)

- (ii) Chiral / anomeric / optically active centre is created since rotation is possible at C₁
 (1)
 [3]
- (b) Hydrogen bonding

 (1)

 (C-O-H | | | | | O

 (1)

 (1)

 (2)
- (c) (i) glucose + ATP => glucose-6-phosphate + ADP (1)

an enzyme / hexokinase / glucokinase is needed (1)

(iii)
$$CH_{2}-O-P-OX$$

$$CONMH$$

- (iii) Glucose-6-phosphate is a competitive/reversible inhibitor (1)
 - It fits into the active site on the enzyme/similar shape to glucose (1) [5]

	WWW.dynamicnaners.com	۰,
Page 2	Mark Scheme WWW.dynamicpapers.com	
	A Level Examinations – November 2002 9701 6	1

Correct line on sketch

(ii) Correct line on sketch

Competes for active sites on the enzyme

Increase the efficiency of the enzyme

(b)

[6]

(1)

(1)

(1)

(1) [4]

Page 3	Mark Scheme WWW.dynan	vicnape	rs-com
	A Level Examinations - November 2002	9701	6

Environmental Chemistry

3.	(a)	Increased use of fertilsers	(1)
		Leaching / runoff of soluble compounds such as nitrates	(1)
		This increases the growth of algae	(1)
		When these die and decay they use up dissolved oxygen / eutrophicat	ion (1) [4]
	(b)	Water from the Baltic is less dense due to lower salinity and higher temperatures (both required)	(1)
	(c)	Nutrient levels are greatest in the North Sea water in which the algae grow	(1)
		The 'jump' layer is not as mobile as the surface waters / little or no mix	king (1) [2]
	(d)	The algal decomposition mainly affects the deeper waters reducing the content	e oxygen (1)
		Oxygen loss is less significant at the surface	(1)
		The smaller the cod populations, the fewer herrings are eaten	(1)
		Cod are found at greater depths where the oxygen loss is greatest	(1) [max 2
	(e)	This shows severely reducing conditions / a large oxygen loss.	(1)

Page 4	Mark Scheme WWW.C	lynar	symmape	rsecom
	A Level Examinations – November 2002		9701	6

4. (a) Lack of flammability / inertness to combustion

Suitable volatility / easily liquefied

Lack of reactivity towards other chemicals present

Non-toxic

[max 2]

(b)
$$CFCl_3 \Rightarrow CFCl_2 + Cl$$
 (1)

$$Cl + O_3 => ClO + O_2$$
 (1)

$$CIO \cdot + O \Rightarrow CI \cdot + O_2 \tag{1}$$

- Cl• is recycled, and can thus destroy many ozone molecules (1)
 [4]
- (c) (i) It breaks down more easily (1)
 - (ii) CFC-11 must have a shorter residence time than CFC-12 (1)

 CFC-12 must have a very long residence time (> 100 years) (1)

 [max 2]
- (d) HCFCs are more readily destroyed in the troposphere (1)

The C—H bond is more readily attacked, and this promotes the breakdown of the molecule (1)

Polarisation of the C-H bond (1) [max 2]

Page 5	Mark Scheme	www.dyn	a sylicpa pe	rseagam
	A Level Examinations – November	2002	9701	6

Phase Equilibria

- 5. (a) As the molecules gain energy (1)
 - the forces between them become much weaker (1)
 - The magnitude of the change is proportional to ΔH_{vap} (1) [max 2]
 - (b) (i) H₂O has a high b.p. due to hydrogen bonding (1)
 - Diagram of water showing 2 H-bonds per molecule (1)
 - H₂S to H₂Te have similar intermolecular dipole-dipole forces / van der Waals' (1)
 - (ii) H_2O : $\frac{40.7}{373}$ = 0.109 H_2S : $\frac{18.7}{213}$ = 0.088

$$H_2Se : 19.3 = 0.079$$
 $H_2Te : 23.2 = 0.087$

- Four values (1)
- For similar bonding, b.p. and ΔH_{vap} are proportional (1)
- Water has a higher ratio due to different / stronger hydrogen bonding(1) [max 5]
- (c) (i) $P = P_A \times X_A$ The vapour pressure exerted by a gas is proportional to its mole fraction (1)
 - (ii) Law holds only for similar intermolecular forces / H₂S and H₂Se both have van der Waals' forces (1)

$$H_2O$$
 and H_2S have different forces (1) [3]

	www.dvn	amichane	are com
Page 6	Mark Scheme	Syllabus	Paper '
	A Level Examinations – November 2002	9701	6

6. (a) (i) Partition coefficient =
$$[X]_{solven 1}$$
 [X]_{solvent 2} (1)

(ii)
$$K = \frac{1.0 \times 10^{-2}}{4.0 \times 10^{-3}} = 2.5$$
 (1)

(iii) Let x mol of iodine be dissolved by the solvent

Then
$$(4.0 \times 10^{-4} - x)$$
 mol I_2 remain in 100 cm³ water (1)

And x mol
$$l_2$$
 are present in 50 cm³ of solvent (1)

$$2.5 = [Concn in solvent] = \frac{20x}{10 (4.0 \times 10^{-4} - x)}$$
 (1)

This gives
$$20x = 25 (4.0 \times 10^{-4} - x)$$

 $45x = 10^{-2}$
 $x = 2.2 \times 10^{-4} \text{ mol}$ (1)

Hence the concn of $\rm I_2$ in the solvent is 20 x 2.2 x $\rm 10^{-4}$ mol dm $^{-3}$

or
$$4.4 \times 10^{-3} \text{ mol dm}^{-3}$$
 (1) [max 6]

(b) (i) The solubility of a gas in a liquid is proportional to the (partial) pressure of the gas (1)

(ii) Solubility of
$$N_2 = 0.79 \times 23.6 = 18.6 \text{ cm}^3 \text{ dm}^{-3}$$
 (1)

Solubility of
$$O_2 = 0.20 \times 48.9 = 9.8 \text{ cm}^3 \text{ dm}^{-3}$$
 (1)

(iii) %
$$N_2$$
 is $18.6 \times 18.6 = 65.5\%$ $18.6 + 9.8 \times 28.4$

And hence
$$\% O_2 = 34.5\%$$
 (1)

Page 7	Mark Scheme	WWV	۷.(nyb	aıs	YIC	Da	ÐЕ	rs?e	TOPIN	
	A Level Examinations – November	2002			T	97	01		100	6	٦

Spectroscopy

7. (a)

-1 for every incorrect over 2

(c) (i) Diphenylmethanone will absorb at lower energy (longer wavelength) (1)

(ii) Energy levels are closer together (1)

hence less energy is required for transitions (1)
(allow longer chromophore / greater delocalisation / conjugation)

[3]

Page 8	Mark Scheme	www.dyn	asmie bespersacem
	A Level Examinations – November	r 2002	9701 6

8. (a) (i) A suspension of an organic solid (1)
in a hydrocarbon oil / Nujol (1)

(ii) Ethanol shows a strong IR absorption due to –OH (1)

It absorbs water which would attack the NaCl plates (1)

[max 3]

(b) Q -C=N R C==O S-C-O(3 correct 2 marks 2 correct 1 mark)

J is

Or ester isomers of the above, NOT –OH / -NH₂ containing isomers(1) [3]

(c) (i) Peak is at M - 15, hence CH_3 has been lost (1)

(ii) T to U is a loss of 30, suggests loss of CH_2O or $-CH_2NH_2$ (1)

(iii) Ratio of M : M+1 gives $n = 0.11 \times 100 = 0.11 \times 10$

If **K** is saturated, it will contain 8 hydrogens $(C_4H_8O_x)$ (1)

This leaves a mass of 32 for the oxygen

Hence \mathbf{K} is $C_4H_8O_2$ (1) [max 4]

		dy/r	a	DODO	rc com_
Page 9	Mark Scheme	ауг	S	AURIDUS	Paper
	A Level Examinations – November 2002			9701	6

Transition Elements

9.	(a)	Labelled	diagram is	acceptable
----	-----	----------	------------	------------

	Impure copper anode, pure copper cathode	(1)
	Copper is transferred to the cathode (or equations)	(1)
	CuSO ₄ (aq) is the electrolyte	(1)
•	Silver settles as the metal in the anode sludge	(1)
	Because E° is more +ve than Cu ²⁺	(1)
	Ni / Zn goes into solution as M ²⁺	(1)
	Because their E° is more negative than Cu ²⁺	(1) [max6]

(ii) moles of
$$S_2O_3^{2-} = 0.1 \times 20/1000 = 2 \times 10^{-3} \text{ mol}$$
 (1)

moles of
$$I_2$$
 = 1 x 10⁻³
moles of Cu^{2+} = 2 x 10⁻³ (1)

(1)

Mass of copper =
$$63.5 \times 2 \times 10^{-3} \text{ g}$$

= 0.127 g

Page 10	Mark Scheme	www.	dvna	กษายุเลยเล	s. Cener
	A Level Examinations – Novemi	ber 2002	· ·	9701	6

10. (a) [Ar]3d⁴

[1]

(b) Mn(II) colourless OR pale pink

Mn(III) red

Mn(VI) green

Mn(VII) purple

4 correct, 3 marks 3 correct, 2 marks etc

[3]

(c) (i) From Data Book:
$$4MnO_4^{2-} - 4e^- => 4MnO_4^{-} E^- = 0.56V$$
 (1)

$$5MnO_4^2 + 8H^+ => Mn^{2+} + 4MnO_4^- + 4H_2O$$
 (1)

$$E^{\circ}_{cell} = +1.74 - 0.56 = +1.18V$$
 (1)

(ii) Oxidation no =
$$+5$$
 (1)

 $8H^{+} + 3MnO_{4}^{3-} => 2MnO_{2} + MnO_{4}^{-} + 4H_{2}O$ (1 for correct formulae, 1 for balancing)(2) [6]