

NOVEMBER 2002

GCE Advanced Level

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT:9701/4

CHEMISTRY (STRUCTURED QUESTIONS (A2 CORE))

Page 1	Mark Scheme WWW.dynarsijnaaperspaper	П
	A Level Examinations – November 2002 9701 4_	\Box

voltmeter or V or potentiometer [NOT meter, ammeter, galvanometer] 1 (a) A:

> salt bridge or potassium nitrate etc. (any sensible soluble salt, e.g. chloride, B: sulphate, nitrate or phosphate) [NOT just bridge, or filter paper]

C: 1 mol dm⁻³ (or 1M or M) H⁺ or H₃O⁺ or HCl or HNO₃ or 0.5 mol dm⁻³ H₂SO₄ (allow unit activity, allow 1.18 mol dm⁻³)

[3] 3

(b) diag

solution containing Fe³⁺/Fe²⁺ at equal or 1 mol dm⁻³ concentrations

[1]

E increases/becomes more positive (c) (i)

E^e decreases/becomes more negative/less positive (ii)

(both correct) [1]

(d) (i)
$$2Fe^{3+} + Cu \longrightarrow 2Fe^{2+} + Cu^{2+}$$

or $2FeCl_3 + Cu \longrightarrow 2FeCl_2 + CuCl_2$
or $Fe^{3+} + Cu \longrightarrow Fe^{2+} + Cu^+$ (or with FeCl₃)

(ii)
$$E_{cell} = (0.77 - 0.34 = +)0.43$$
 (V) [1] [or $E_{cell} = (0.77 - 0.52 = +)0.25$ if Cu has been oxidised to Cu^+ in (i)]

 $0.02 \times 75/1000 \ (or = 1.5 \times 10^{-3})$ $moles(MnO_4) =$ (e) (i) ([1] for working) [1]

moles(Fe²⁺) =
$$5 \times 1.5 \times 10^{-3}$$
 = 7.5×10^{-3} (mark is for x 5: allow ecf if n(MnO₄) is wrong) [1]

(ii) moles(Cu) (moles(Fe))/2 3.75×10^{-3} [1]

mass(Cu) =
$$63.5 \times 3.75 \times 10^{-3}$$
 = **0.24g** [1] (ignore sig figs. allow ecf from (i) – i.e. mark is for $\times 63.5 \text{ or } \times 64$))

(if Cu has been oxidised to Cu^{+} , the corresponding answers are 7.5 x 10^{-3} [1] and 0.48g [1]) (if candidates have attempted to oxidise Cu by reducing Fe³⁺ to Fe, they lose the mark in d(i), but can gain ecf marks for d(ii), (-0.56V or -0.38V) and also for e(ii))

Total: 12

Page 2	Mark Scheme WWW.dyna	ingicage	rs com
	A Level Examinations – November 2002	9701	4

2 (a)
$$2 \text{ Na}^+(g) + O^2^-(g) \longrightarrow \text{Na}_2O(s)$$
 (must have all 3 state symbols) [1]

- (b) (i) A: (2)Na(g) B: O(g) [NOT O (g)]
 - (ii) 1: (first) ionisation energy (of sodium) or IE or ΔH_i
 - 2: first **and second** electron affinities (of oxygen) or EA₁ + EA₂ (if B was stated as O(g) rather than O(g), allow ½-mark for EA₂ only)
 - 3: lattice energy (of Na₂O) or LE or ΔH_{lat}
 - 4: enthalpy change of formation or ΔH_f (of Na₂O) or $2\Delta H_c$ [for parts (i) and (ii) award ½ mark for each correct answer. Total the halves and round down]

for parts (i) and (ii) award ½ mark for each correct answer. Total the halves and round down]

(c)
$$(\Delta H_f = 2\Delta H_{at}(Na) + 2 IE_1(Na) + \Delta H_{at}(O) + (EA_1 + EA_2)(O) + LE)$$

 $-414 = 2(107) + 2(494) + 496/2 + (-141 + 798) + LE$
 $\therefore LE = -2521 \text{ (kJ mol}^{-1})$
correct answer, including sign [3]

allow [1] for use of the 6 correct values, i.e. the 4 on the question paper and 2 obtained from the data book: 496 and 494 (be aware that the "494" may appear as "988" and the "496" as "248" and the "798-141" as "657")

allow [1] for use of the correct multipliers for the values used, (i.e. if IE(Na) has been omitted, don't penalise for not multiplying 494 by 2). There are three multipliers: x2, x2 and $x\frac{1}{2}$. Some candidates are using the bond energy of O-O rather than O=O, in which case you can allow 150/2 for this mark (they will have forfeited the previous mark)

allow [2] for a correctly calculated answer from just one incorrect piece of data.

(d) (i) higher/bigger/more (i.e. more negative) [1]

doubly charged cation or bigger charge (density) of cation or smaller cation [1]

(ii) furnace linings or refractory material or crucibles [1]

high melting point [1]

Total: 11

3

[3]

Page 3	Mark Scheme	www.dy	/na	Bylapape	er sagefin
	A Level Examinations – November	2002		9701	4

(b) (i) no reaction/hydrolysis or insoluble or immiscible [1]

Sn or Pb or "the last two":

(ii) gives (HCl) fumes/gas or ppt/white solid/gel (of SiO₂) [1]

metallic bonding

- (iii) SiCl₄ + 2H₂O \longrightarrow SiO₂ + 4HCl [1] [allow balanced equations giving H₂SiO₃ or Si(OH)₄, but not partial hydrolysis to SiOCl₂ etc] [penalise other equations, e.g. CCl₄ + H₂O, only if mark in (i) HAS been awarded]
- (iv) Si has (available) d-orbitals (so attack by nucleophiles is easier) [1]

Total: 9 max 8

[1] 5

	vaav dyna	miananar	- com
Page 4	Mark Scheme WWW.Uylla	I SAIHABRE.	o. Paβel-
	A Level Examinations – November 2002	9701	4

4	(a)	m.pt.	(due to:) stronger lattice/bonding or more delocalised electrons [1] ty:(due to:) heavier atoms/larger A _r but (roughly) the same/smaller	1] 1]
·			radius/size or closer packing [both mass and size need to be referred to] [1	1] 3
	(b)	or fo	hird IE is not much greater than the second IE for iron, Ca the third IE is much greater than the second IE can use/ionise d-electrons as well as 4s electrons	
			and s electrons/orbitals are of similar energies [1	[]
				1
ı	(c)	(i)	$CaCO_3 \longrightarrow CaO + CO_2$	[]
		(ii) (iii)	$ 2 \text{ FeCO}_3 + \frac{1}{2} O_2 \longrightarrow \text{Fe}_2 O_3 + 2 C O_2 \text{FeCO}_3 = 55.8 + 12 + 48 = 115.8 $	i]
		` ,	$Fe_2O_3 = 2 (55.8) + 48 = 159.6$ (both M _r values) [1 2 x 115.8 \longrightarrow 159.6]
			$\therefore 10 \text{ tonnes} \longrightarrow 10 \times 159.6/(2 \times 115.8)$ = 6.89 (tonnes) (2 or more sig figs. allow ecf from wrong M. values) [1]	17

[if candidates think iron carbonate is $Fe_2(CO_3)_3$ or $Fe(CO_3)_2$, they lose the mark for (ii), but can be awarded ecf marks in (iii) as follows: for $Fe_2(CO_3)_3$, $M_r = 291.6$ and mass = 5.47 tonnes, for $Fe(CO_3)_2$ $M_r = 175.8$ and mass = 4.54 tonnes]

[no units required, but if answer is given as 6890, kg must be specified; or 6.89 x 10⁶ g]

Total: 8

Page 5	Mark Scheme	www.dyn	arsyicapape	rspan
	A Level Examinations – November	er 2002	9701	4

look for the "horseshoe" of delocalised electrons (somewhere around the rest of the ring, away from the sp³ carbon atom) and the (+) charge somewhere on/near the horseshoe (NOT on the sp³ carbon. A (+) charge on H or NO₂ negates

(ii)
$$X^{+} = NO_{2}^{+}$$
 [1]
(iii) $Z^{+} = H^{+} (NOT H_{3}O^{+})$ (penalise once only for absence of (+) signs) [1]

(iii)
$$Z^{+} = H^{+} (NOT H_{3}O^{+})$$
 (penalise once only for absence of (+) signs) [1]

(iv)
$$2 \text{ H}_2\text{SO}_4 + \text{HNO}_3 \longrightarrow \text{NO}_2^+ + \text{H}_3\text{O}^+ + 2\text{HSO}_4^-$$
 [2] ([1] for species, [1] for balancing. Allow [1] for: the acids $\longrightarrow \text{NO}_2^+ + \text{HSO}_4^-$ (+H₂O)) 5

$$\begin{array}{c} \text{(ii)} \\ \text{H}_2\text{N} \\ \text{NH}_2 \\ \text{NH}_2 \\ \end{array}$$

Ignore alkyl groups – these can be "R" or even incorrect. Allow NH₃⁺ or NH₃Cl instead of one or more NH₂ groups

Total: 10

[1]

Page 6	Mark Scheme WWW.dyn	asympape	Laber
	A Level Examinations – November 2002	9701	4

(a)	nucle	ophilic substitution (NOT elimination, NOT condensation)	[1] 1
(b)		CH_2CO_2H (or name) [1] $SOCl_2 \ or \ PCl_3 \ or \ PCl_3 \ or \ P+Cl_2$ n, formula takes precedence)	[1]
(c)	(i)	CH ₃ CH ₂ CN (if CN is shown in full, it must be C≡N, not C-N)	[1]
	(ii)	NaCN or KCN + heat/warm/reflux/T between 50° and 100° (in ethanol) (NOT CN: mention of acid negates mark)	[1]
	(iii)	H ₂ + Ni/Pt/Pd or LiAlH ₄ or Na + ethanol (NOT NaBH ₄)	[1] 3
(d)	(i)	condensation	[1]
	(ii)	H ₂ N-C ₆ H ₄ -NH ₂ [1] HO ₂ C-C ₆ H ₄ -CO ₂ H or ClCO-C ₆ H ₄ -COCl [allow NH ₂ C ₆ H ₄ NH ₂ but NOT CO ₂ HC ₆ H ₄ CO ₂ H]	[1]
	(iii)	Strong forces between chains or chains are rigid/inflexible	[1]
	(iv) <u>w</u>	rarm/heat/boil/reflux with aq/dilute acid/H ⁺ /H ₂ SO ₄ or base/OH/NaOH [allow warm/heat/boil/reflux with conc HCl for [1] mark]	[1]
		Tot	5 al: 11