# Cambridge International AS & A Level

| CANDIDATE<br>NAME |  |  |                     |  |  |
|-------------------|--|--|---------------------|--|--|
| CENTRE<br>NUMBER  |  |  | CANDIDATE<br>NUMBER |  |  |

CHEMISTRY 9701/32

Paper 3 Advanced Practical Skills 2

May/June 2022

2 hours

You must answer on the question paper.

You will need: The materials and apparatus listed in the confidential instructions

#### **INSTRUCTIONS**

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

#### INFORMATION

- The total mark for this paper is 40.
- The number of marks for each question or part question is shown in brackets [ ].
- The Periodic Table is printed in the question paper.
- Important values, constants and standards are printed in the question paper.
- Notes for use in qualitative analysis are provided in the question paper.

| Session    |
|------------|
|            |
| Laboratory |
|            |
| ·          |

| For Examiner's Use |  |  |
|--------------------|--|--|
| 1                  |  |  |
| 2                  |  |  |
| 3                  |  |  |
| Total              |  |  |

This document has 12 pages.

#### Quantitative analysis

Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show the precision of the apparatus you used in the data you record.

Show your working and appropriate significant figures in the final answer to **each** step of your calculations.

A bottle containing the acid salt sodium hydrogen sulfate, NaHSO<sub>4</sub>, has been contaminated. You will determine the percentage purity by mass of the sodium hydrogen sulfate by titrating a solution of the acid salt against a known concentration of sodium hydroxide.

$$NaHSO_4(aq) + NaOH(aq) \rightarrow Na_2SO_4(aq) + H_2O(I)$$

The impurity in the sodium hydrogen sulfate does not react with aqueous sodium hydroxide under the conditions of the titration.

**FB 1** is 0.100 mol dm<sup>-3</sup> sodium hydroxide, NaOH.

**FB 2** is 12.53 g dm<sup>-3</sup> impure sodium hydrogen sulfate.

**FB 3** is thymol blue indicator.

#### (a) Method

- Fill a burette with **FB 1**.
- Pipette 25.0 cm³ of **FB 2** into a conical flask.
- Add approximately 10 drops of FB 3.
- Perform a rough titration and record your burette readings in the space below. The end-point is shown by the appearance of a permanent blue colour.

The rough titre is ...... cm<sup>3</sup>.

- Carry out as many titrations as you think necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record, in a suitable form below, all your burette readings and the volume of **FB 1** added in each accurate titration.

I II III IV V VI VII

[7]

| (b) |       | om your accurate titration results, calculate a suitable mean value to use in your calculations.<br>Now clearly how you obtain the mean value. |
|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------|
|     |       | 25.0 cm <sup>3</sup> of <b>FB 2</b> required cm <sup>3</sup> of <b>FB 1</b> . [1]                                                              |
| (c) | Ca    | lculations                                                                                                                                     |
|     | (i)   | Give <b>all</b> your answers to <b>(c)(ii)</b> , <b>(c)(iii)</b> and <b>(c)(iv)</b> to an appropriate number of significant figures.           |
|     | (ii)  | Use your answer to <b>(b)</b> to calculate the amount, in mol, of sodium hydroxide, <b>FB 1</b> , titrated.                                    |
|     |       | and a file Oil                                                                                                                                 |
|     |       | amount of NaOH = mol.  Hence, deduce the amount, in mol, of sodium hydrogen sulfate present in 25.0 cm³ of FB 2.                               |
|     |       | amount of NaHSO <sub>4</sub> = mol                                                                                                             |
| (   | (iii) | Use your final answer to <b>(c)(ii)</b> to calculate the mass of sodium hydrogen sulfate present in 1.00 dm³ of <b>FB 2</b> .                  |
|     |       | mass of NaHSO <sub>4</sub> = g [1]                                                                                                             |
| (   | (iv)  | Use your answer to <b>(c)(iii)</b> and the information on page 2 to calculate the percentage purity by mass of the sodium hydrogen sulfate.    |
|     |       | percentage purity = % [1]                                                                                                                      |
|     |       |                                                                                                                                                |

4

2 In Question 1 you carried out a neutralisation reaction involving sodium hydroxide.

$$H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$$

In **Question 2** you are to determine the enthalpy of neutralisation,  $\Delta H_{\text{neut}}$ , as shown by the equation above. You will use a solution of sodium hydroxide and the diprotic acid, sulfuric acid.

**FB 4** is approximately 2 mol dm<sup>-3</sup> sodium hydroxide, NaOH.

**FB 5** is 1.00 mol dm<sup>-3</sup> sulfuric acid, H<sub>2</sub>SO<sub>4</sub>.

#### (a) Method

- Place the cup in the 250 cm³ beaker.
- Use the 25.0 cm³ measuring cylinder to transfer 25.0 cm³ of **FB 4** into the cup.
- Place the thermometer in the solution. Record the temperature.
- Fill the clean burette with FB 5.
- Run 5.00 cm<sup>3</sup> of **FB 5** into the same cup.
- Stir the mixture and record the highest temperature observed.
- Repeat adding 5.00 cm<sup>3</sup> volumes of FB 5 into the same cup until 45.00 cm<sup>3</sup> has been added. Record the highest temperature after each addition.

#### Results

Table 2.1

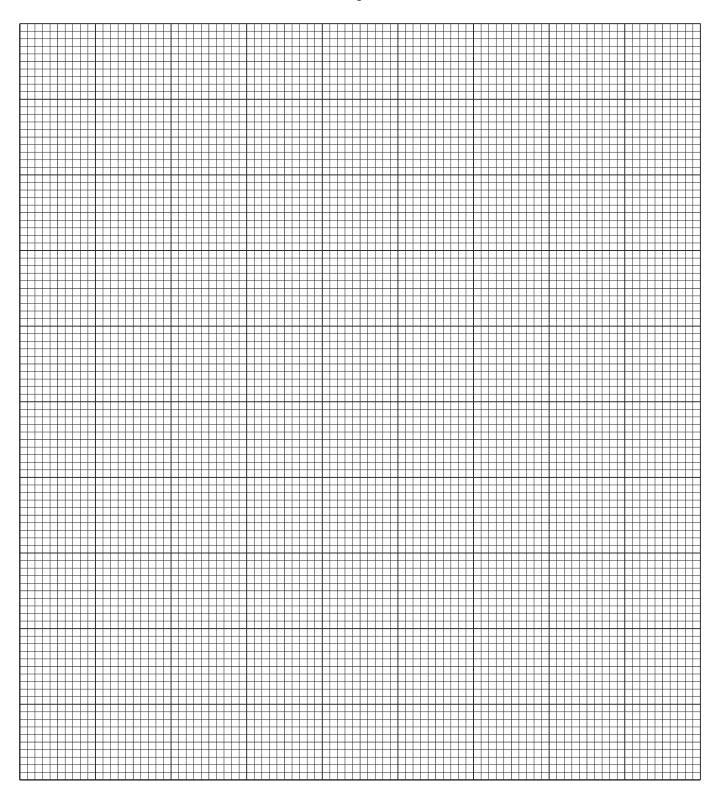
| volume of <b>FB 5</b> /cm <sup>3</sup> | 0.00  | 5.00  | 10.00 | 15.00 | 20.00 |
|----------------------------------------|-------|-------|-------|-------|-------|
| temperature/°C                         |       |       |       |       |       |
|                                        |       |       |       |       |       |
| volume of <b>FB 5</b> /cm <sup>3</sup> | 25.00 | 30.00 | 35.00 | 40.00 | 45.00 |
| temperature/°C                         |       |       |       |       |       |

[3]

**(b) (i)** Plot a graph of temperature (*y*-axis) against volume of acid added (*x*-axis) on the grid provided. Select a scale on the *y*-axis to include a temperature 2.0 °C above the highest temperature you recorded.

Label any points you consider to be anomalous. Draw two lines of best fit, one for the rise in temperature and one for the temperature change after the maximum temperature has been reached.

Extrapolate the two lines so they intersect.


[4]

- (ii) Use your graph to:
  - determine the volume of sulfuric acid, **FB 5**, required to neutralise 25.0 cm<sup>3</sup> of sodium hydroxide, **FB 4**
  - determine the maximum change in temperature,  $\Delta T$ .

volume of 
$$H_2SO_4 = \dots cm^3$$

maximum 
$$\Delta T = \dots ^{\circ}C$$

[1]



| (c) | (i)  | Use your answer to <b>(b)(ii)</b> to calculate the amount, in mol, of sulfuric acid, <b>FB 5</b> , neutralised in your reaction.                                                                            |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      | amount of H <sub>2</sub> SO <sub>4</sub> = mol [1]                                                                                                                                                          |
|     | (ii) | Calculate the heat energy evolved in the neutralisation reaction in (a). (Assume that 4.18 J are required to change the temperature of $1.0\mathrm{cm^3}$ of solution by $1.0\mathrm{^\circ C}$ .)          |
|     |      | heat energy evolved = J [1]                                                                                                                                                                                 |
| (   | iii) | Use your answers to <b>(c)(i)</b> and <b>(c)(ii)</b> to calculate the enthalpy of neutralisation, $\Delta H_{\text{neut}}$ , for the reaction given in <b>(a)</b> .                                         |
|     |      | $H^{+}(aq) + OH^{-}(aq) \rightarrow H_{2}O(I)$                                                                                                                                                              |
|     |      |                                                                                                                                                                                                             |
|     |      |                                                                                                                                                                                                             |
|     |      | $\Delta H_{\text{neut}} = \dots$ [1]                                                                                                                                                                        |
| (d) | (i)  | The value for $\Delta H_{\text{neut}}^{\text{e}}$ quoted in a textbook is -57.6 kJ mol <sup>-1</sup> .                                                                                                      |
|     |      | Calculate the percentage error in your answer to <b>(c)(iii)</b> compared with the theoretical value. (If you were unable to answer <b>(c)(iii)</b> then assume the value was –49.2 kJ mol <sup>-1</sup> .) |
|     |      |                                                                                                                                                                                                             |
|     |      | percentage error = % [1]                                                                                                                                                                                    |
|     | (ii) | Without changing the apparatus, suggest <b>one</b> improvement that could be made to the method in <b>(a)</b> . Explain your answer.                                                                        |
|     |      | improvement                                                                                                                                                                                                 |
|     |      |                                                                                                                                                                                                             |
|     |      | explanation                                                                                                                                                                                                 |
|     |      | [1]                                                                                                                                                                                                         |

| Use your graph and the information on page 4 to calculate the concentration of sodium hydroxide in FB 4.                                                        | n, in moldm <sup>-3</sup> |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                                                                                                                                                 |                           |
|                                                                                                                                                                 |                           |
|                                                                                                                                                                 |                           |
| concentration of NaOH =                                                                                                                                         | moldm <sup>-3</sup> [1]   |
| ) A student repeats <b>Question 1</b> with a new solution of <b>FB 1</b> .                                                                                      |                           |
| The student decides to dilute <b>FB 4</b> by a factor of 20 to make the new <b>FB 1</b>                                                                         | solution.                 |
| The student incorrectly assumes the concentration of the new $\mbox{{\bf FB}}$ $0.100\mbox{mol}\mbox{dm}^{-3}.$                                                 | <b>1</b> solution is      |
| Calculate the <b>actual</b> concentration of NaOH in the new <b>FB 1</b> solution.                                                                              |                           |
| (If you were unable to answer <b>(e)(i)</b> then assume the concentration of sodium <b>FB 4</b> was 1.93 mol dm <sup>-3</sup> . This is not the correct value.) | m hydroxide in            |
|                                                                                                                                                                 |                           |
|                                                                                                                                                                 |                           |
| concentration of NaOH in the new FB 1 solution =                                                                                                                | moldm⁻ <sup>⊲</sup>       |
| Predict the effect that using the new <b>FB 1</b> solution has on the value for the purity of the sodium hydrogen sulfate you calculated in <b>1(c)(iv)</b> .   | ne percentage             |
| The percentage purity of NaHSO <sub>4</sub> would be larger than calculated.                                                                                    |                           |
| The percentage purity of NaHSO <sub>4</sub> would be the same as calculated.                                                                                    |                           |
| The percentage purity of NaHSO <sub>4</sub> would be smaller than calculated.                                                                                   |                           |
| Tick the appropriate box and explain your answer.                                                                                                               |                           |
|                                                                                                                                                                 |                           |
|                                                                                                                                                                 |                           |
|                                                                                                                                                                 | [2]                       |
|                                                                                                                                                                 | [Total: 16]               |
|                                                                                                                                                                 | concentration of NaOH =   |

[4]

#### **Qualitative analysis**

For each test you should record all your observations in the spaces provided.

Examples of observations include:

- colour changes seen
- the formation of any precipitate and its solubility (where appropriate) in an excess of the reagent added
- the formation of any gas and its identification (where appropriate) by a suitable test.

You should record clearly at what stage in a test an observation is made.

Where no change is observed you should write 'no change'.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

If any solution is warmed, a boiling tube must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests should be attempted.

the anion present.

3 (a) FB 6 is the solid impurity found in the bottle of solid used to prepare FB 2. It is a compound of a Group 1 metal and does **not** contain sulfur. The anion in FB 6 is listed in the Qualitative analysis notes.

| ·                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| reagent or reagents                                                                                                                                                      |
| apparatus and conditions                                                                                                                                                 |
|                                                                                                                                                                          |
| observations                                                                                                                                                             |
|                                                                                                                                                                          |
| From your observations give the formula of the anion present.  If you are unable to identify the anion positively from your test and observations, then write 'unknown'. |

Select a reagent, or reagents, and carry out one test on FB 6 to collect more information about

© UCLES 2022 9701/32/M/J/22

formula of anion .....

(b) (i) FB 7 and FB 8 are solutions containing a total of three cations. All of the cations are listed in the Qualitative analysis notes.

Carry out the following tests and record your observations. Use a fresh 1cm depth of solution in a test-tube for each test.

Table 3.1

| 40.04                                                                 | observations |      |  |  |  |
|-----------------------------------------------------------------------|--------------|------|--|--|--|
| test                                                                  | FB 7         | FB 8 |  |  |  |
| Test 1 Add a few drops of acidified aqueous potassium manganate(VII). |              |      |  |  |  |
| Test 2 Add aqueous ammonia.                                           |              |      |  |  |  |
| Test 3 Add aqueous sodium hydroxide, then                             |              |      |  |  |  |
| decant the mixture into a boiling tube and warm gently.               |              |      |  |  |  |

[4]

| (ii)  | Using your observations in <b>(b)(i)</b> , identify the cations present in <b>FB 7</b> and <b>FB 8</b> . Write the formula of each cation identified. If the tests do not allow you to positively identify the cations, write 'unknown'. |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | cation or cations in <b>FB 7</b>                                                                                                                                                                                                         |
|       | cation or cations in <b>FB 8</b> [2]                                                                                                                                                                                                     |
| (iii) | Construct the ionic equation for <b>one</b> reaction observed on addition of aqueous ammonia in <b>Test 2</b> . Include state symbols.                                                                                                   |
|       | [1]                                                                                                                                                                                                                                      |
| (iv)  | Deduce the type of reaction which occurs when acidified aqueous potassium manganate( $VII$ ) is added to <b>FB 7</b> in <b>Test 1</b> in <b>(b)(i)</b> .                                                                                 |
|       | [1]                                                                                                                                                                                                                                      |

[Total: 12]

## **Qualitative analysis notes**

## 1 Reactions of cations

| cation                               | reaction with                                                                |                                                                              |  |  |  |
|--------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|
|                                      | NaOH(aq)                                                                     | NH₃(aq)                                                                      |  |  |  |
| aluminium, Al³+(aq)                  | white ppt. soluble in excess                                                 | white ppt. insoluble in excess                                               |  |  |  |
| ammonium, NH <sub>4</sub> +(aq)      | no ppt.<br>ammonia produced on warming                                       | _                                                                            |  |  |  |
| barium, Ba <sup>2+</sup> (aq)        | faint white ppt. is observed unless [Ba²+(aq)] is very low                   | no ppt.                                                                      |  |  |  |
| calcium, Ca²⁺(aq)                    | white ppt. unless [Ca <sup>2+</sup> (aq)] is very low                        | no ppt.                                                                      |  |  |  |
| chromium(III), Cr³+(aq)              | grey-green ppt. soluble in excess giving dark green solution                 | grey-green ppt. insoluble in excess                                          |  |  |  |
| copper(II), Cu <sup>2+</sup> (aq)    | pale blue ppt. insoluble in excess                                           | pale blue ppt. soluble in excess giving dark blue solution                   |  |  |  |
| iron(II), Fe <sup>2+</sup> (aq)      | green ppt. turning brown on contact with air insoluble in excess             | green ppt. turning brown on contact with air insoluble in excess             |  |  |  |
| iron(III), Fe <sup>3+</sup> (aq)     | red-brown ppt. insoluble in excess                                           | red-brown ppt. insoluble in excess                                           |  |  |  |
| magnesium, Mg <sup>2+</sup> (aq)     | white ppt. insoluble in excess                                               | white ppt. insoluble in excess                                               |  |  |  |
| manganese(II), Mn <sup>2+</sup> (aq) | off-white ppt. rapidly turning brown on contact with air insoluble in excess | off-white ppt. rapidly turning brown on contact with air insoluble in excess |  |  |  |
| zinc, Zn²+(aq)                       | white ppt. soluble in excess                                                 | white ppt. soluble in excess                                                 |  |  |  |

### 2 Reactions of anions

| anion                                                         | reaction                                                                                                                                  |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| carbonate, CO <sub>3</sub> <sup>2-</sup>                      | CO <sub>2</sub> liberated by dilute acids                                                                                                 |
| chloride, C <i>l</i> ⁻(aq)                                    | gives white ppt. with Ag <sup>+</sup> (aq) (soluble in NH <sub>3</sub> (aq))                                                              |
| bromide, Br <sup>-</sup> (aq)                                 | gives cream/off-white ppt. with Ag <sup>+</sup> (aq) (partially soluble in NH <sub>3</sub> (aq))                                          |
| iodide, I <sup>-</sup> (aq)                                   | gives pale yellow ppt. with Ag <sup>+</sup> (aq) (insoluble in NH <sub>3</sub> (aq))                                                      |
| nitrate, NO <sub>3</sub> -(aq)                                | NH <sub>3</sub> liberated on heating with OH <sup>-</sup> (aq) and A <i>l</i> foil                                                        |
| nitrite, NO <sub>2</sub> -(aq)                                | NH <sub>3</sub> liberated on heating with OH <sup>-</sup> (aq) and A <i>l</i> foil; decolourises acidified aqueous KMnO <sub>4</sub>      |
| sulfate, SO <sub>4</sub> <sup>2-</sup> (aq)                   | gives white ppt. with Ba <sup>2+</sup> (aq) (insoluble in excess dilute strong acids); gives white ppt. with high [Ca <sup>2+</sup> (aq)] |
| sulfite, SO <sub>3</sub> <sup>2-</sup> (aq)                   | gives white ppt. with Ba²+(aq) (soluble in excess dilute strong acids); decolourises acidified aqueous KMnO₄                              |
| thiosulfate, S <sub>2</sub> O <sub>3</sub> <sup>2-</sup> (aq) | gives off-white/pale yellow ppt. slowly with H <sup>+</sup>                                                                               |

## 3 Tests for gases

| gas                             | test and test result              |  |  |  |
|---------------------------------|-----------------------------------|--|--|--|
| ammonia, NH <sub>3</sub>        | turns damp red litmus paper blue  |  |  |  |
| carbon dioxide, CO <sub>2</sub> | gives a white ppt. with limewater |  |  |  |
| hydrogen, H <sub>2</sub>        | 'pops' with a lighted splint      |  |  |  |
| oxygen, O <sub>2</sub>          | relights a glowing splint         |  |  |  |

## 4 Tests for elements

| element                | test and test result                                   |  |  |  |  |  |  |
|------------------------|--------------------------------------------------------|--|--|--|--|--|--|
| iodine, I <sub>2</sub> | gives blue-black colour on addition of starch solution |  |  |  |  |  |  |

### Important values, constants and standards

| molar gas constant              | $R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$                                                                                 |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Faraday constant                | $F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$                                                                                    |
| Avogadro constant               | $L = 6.022 \times 10^{23} \mathrm{mol^{-1}}$                                                                                          |
| electronic charge               | $e = -1.60 \times 10^{-19} C$                                                                                                         |
| molar volume of gas             | $V_{\rm m} = 22.4  {\rm dm^3  mol^{-1}}$ at s.t.p. (101 kPa and 273 K)<br>$V_{\rm m} = 24.0  {\rm dm^3  mol^{-1}}$ at room conditions |
| ionic product of water          | $K_{\rm w} = 1.00 \times 10^{-14} \rm mol^2  dm^{-6}  (at  298  K  (25  {}^{\circ}C))$                                                |
| specific heat capacity of water | $c = 4.18 \mathrm{kJ  kg^{-1}  K^{-1}}  (4.18 \mathrm{J  g^{-1}  K^{-1}})$                                                            |

The Periodic Table of Elements

|       | 18 | 2 | He | helium<br>4.0   | 10            | Ne           | neon<br>20.2                 | 18 | Ą  | argon<br>39.9      | 36 | 궃  | krypton<br>83.8   | 22 | Xe | xenon<br>131.3     | 98    | R           | radon             | 118    | Og        | oganessor          |
|-------|----|---|----|-----------------|---------------|--------------|------------------------------|----|----|--------------------|----|----|-------------------|----|----|--------------------|-------|-------------|-------------------|--------|-----------|--------------------|
|       | 17 |   |    |                 | 6             | ш            | fluorine<br>19.0             | 17 | Cl | chlorine<br>35.5   | 35 | Ŗ  | bromine<br>79.9   | 53 | Н  | iodine<br>126.9    | 85    | Αţ          | astatine<br>-     | 117    | <u>s</u>  | tennessine<br>-    |
|       | 16 |   |    |                 | 8             | 0            | oxygen<br>16.0               | 16 | S  | sulfur<br>32.1     | 34 | Se | selenium<br>79.0  | 52 | Б  | tellurium<br>127.6 | 84    | Ъо          | molod             | 116    | ^         | livermorium        |
|       | 15 |   |    |                 | 7             | z            | nitrogen<br>14.0             | 15 | ۵  | phosphorus<br>31.0 | 33 | As | arsenic<br>74.9   | 51 | Sb | antimony<br>121.8  | 83    | <u>.</u>    | bismuth<br>209.0  | 115    | Mc        | moscovium<br>-     |
|       | 14 |   |    |                 | 9             | O            | carbon<br>12.0               | 14 | S  | silicon<br>28.1    | 32 | Ge | germanium<br>72.6 | 20 | Sn | tin<br>118.7       | 82    | Pb          | lead<br>207.2     | 114    | Εl        | flerovium          |
|       | 13 |   |    |                 | 2             | В            | boron<br>10.8                | 13 | Ρl | aluminium<br>27.0  | 31 | Ga | gallium<br>69.7   | 49 | In | indium<br>114.8    | 81    | 1L          | thallium<br>204.4 | 113    | Ł         | nihonium           |
|       |    |   |    |                 |               |              |                              |    |    | 12                 | 30 | Zu | zinc<br>65.4      | 48 | g  | cadmium<br>112.4   | 80    | Нg          | mercury<br>200.6  | 112    | ပ်        | copernicium        |
|       |    |   |    |                 |               |              |                              |    |    | 7                  | 29 | Cn | copper<br>63.5    | 47 | Ag | silver<br>107.9    | 62    | Au          | gold<br>197.0     | 111    | Rg        | roentgenium<br>-   |
| dr    |    |   |    |                 |               |              |                              |    |    | 10                 | 28 | Z  | nickel<br>58.7    | 46 | Pd | palladium<br>106.4 | 78    | ₹           | platinum<br>195.1 | 110    | Ds        | darmstadtium<br>-  |
| Group |    |   |    |                 |               |              |                              |    |    | <u></u>            | 27 | රි | cobalt<br>58.9    | 45 | 牊  | rhodium<br>102.9   | 77    | 'n          | iridium<br>192.2  | 109    | ¥         | meitnerium<br>-    |
|       |    | - | I  | hydrogen<br>1.0 |               |              |                              |    |    | 80                 | 26 | Ъе | iron<br>55.8      | 4  | Ru | ruthenium<br>101.1 | 9/    | SO          | osmium<br>190.2   | 108    | ¥         | hassium            |
|       |    |   |    |                 |               |              |                              |    |    | 7                  | 25 | Mn | manganese<br>54.9 | 43 | ည  | technetium<br>-    | 75    | Re          | rhenium<br>186.2  | 107    | В         | bohrium            |
|       |    |   |    |                 |               | loc          | SS                           |    |    | 9                  | 24 | ပ် | chromium<br>52.0  | 42 | Mo | molybdenum<br>95.9 | 74    | >           | tungsten<br>183.8 | 106    | Sg        | seaborgium<br>-    |
|       |    |   |    | Key             | atomic number | atomic symbo | name<br>relative atomic mass |    |    | 2                  | 23 | >  | vanadium<br>50.9  | 14 | q  | niobium<br>92.9    | 73    | д           | tantalum<br>180.9 | 105    | 9         | dubnium            |
|       |    |   |    |                 | æ             | ato          | rela                         |    |    | 4                  | 22 | F  | titanium<br>47.9  | 40 | Zr | zirconium<br>91.2  | 72    | Ξ           | hafnium<br>178.5  | 104    | 꿏         | rutherfordium<br>- |
|       |    |   |    |                 |               |              |                              | _  |    | က                  | 21 | Sc | scandium<br>45.0  | 39 | >  | yttrium<br>88.9    | 57-71 | lanthanoids |                   | 89–103 | actinoids |                    |
|       | 2  |   |    |                 | 4             | Be           | beryllium<br>9.0             | 12 | Mg | magnesium<br>24.3  | 20 | Ca | calcium<br>40.1   | 38 | Š  | strontium<br>87.6  | 99    | Ba          | barium<br>137.3   | 88     | Ra        | radium             |
|       | _  |   |    |                 | 3             | :=           | lithium<br>6.9               | 11 | Na | sodium<br>23.0     | 19 | ×  | potassium<br>39.1 | 37 | Rb | rubidium<br>85.5   | 55    | S           | caesium<br>132.9  | 87     | ъ́        | francium           |

| 71 | Ľ  | lutetium<br>175.0     | 103 | ۲  | lawrencium   | ı     |  |
|----|----|-----------------------|-----|----|--------------|-------|--|
|    |    | ytterbium<br>173.1    |     |    |              | ı     |  |
| 69 | TB | thulium<br>168.9      | 101 | Md | mendelevium  | ı     |  |
| 89 | Щ  | erbium<br>167.3       | 100 | Fm | ferminm      | ı     |  |
| 29 | 유  | holmium<br>164.9      | 66  | Es | einsteinium  | ı     |  |
| 99 | Dy | dysprosium<br>162.5   | 86  | ర్ | californium  | ı     |  |
| 65 | Д  | terbium<br>158.9      | 26  | 益  | berkelium    | I     |  |
| 64 | Вd | gadolinium<br>157.3   | 96  | CB | curium       | ı     |  |
| 63 | En | europium<br>152.0     | 92  | Am | americium    | ı     |  |
| 62 | Sm | samarium<br>150.4     | 8   | Pu | plutonium    | I     |  |
| 19 | Pm | promethium<br>-       | 93  | ď  | neptunium    | ı     |  |
| 09 | PN | neodymium<br>144.4    | 92  | ⊃  | uranium      | 238.0 |  |
| 59 | Ą  | praseodymium<br>140.9 | 91  | Ра | protactinium | 231.0 |  |
| 58 | Se | cerium<br>140.1       | 06  | T  | thorium      | 232.0 |  |
| 22 | Га | lanthanum<br>138.9    | 89  | Ac | actinium     | ı     |  |

lanthanoids

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.