	Cambridge International A Level	Cambridge International Examinations Cambridge International Advanced Level			
	CANDIDATE NAME				
	CENTRE NUMBER	CANDIDATE NUMBER			
* 3 2	CHEMISTRY		9701/51		
748	Paper 5 Planni	May/June 2015 1 hour 15 minutes			
	Candidates ans				
8 9	No Additional Materials are required.				

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use an HB pencil for any diagrams or graphs.Do not use staples, paper clips, glue or correction fluid.DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units. Use of a Data Booklet is unnecessary.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 9 printed pages and 3 blank pages.

IB15 06_9701_51/FP © UCLES 2015

[Turn over

1 A saturated aqueous solution of magnesium methanoate, Mg(HCOO)₂, has a solubility of approximately 150 g dm⁻³ at room temperature. Its exact solubility can be determined by titrating magnesium methanoate against aqueous potassium manganate(VII).

During the titration, the methanoate ion, HCOO⁻, is oxidised to carbon dioxide while the manganate(VII) ion, MnO_4^{-} , is reduced to Mn^{2+} .

You are supplied with:

a saturated aqueous solution of $Mg(HCOO)_2$ aqueous potassium manganate(VII), $KMnO_4$, of concentration 0.0200 mol dm⁻³

(a) (i) Write the half equations for the oxidation of HCOO⁻(aq) to $CO_2(g)$ and the reduction of $MnO_4^{-}(aq)$ to $Mn^{2+}(aq)$ in acid solution.

.....

(ii) Using the approximate solubility above, calculate the concentration, in moldm⁻³, of the saturated aqueous magnesium methanoate and the concentration of the methanoate ions present in this solution.

[*A*_r: H, 1.0; C, 12.0; O, 16.0; Mg, 24.3]

[2]

(iii) In order to obtain a reliable titre value, the saturated solution of magnesium methanoate needs to be diluted.

Describe how you would accurately measure a 5.0 cm³ sample of saturated magnesium methanoate solution and use it to prepare a solution fifty times more dilute than the saturated solution.

.....

.....[2]

9701/51/M/J/15

© UCLES 2015

(iv) Before the titration is carried out, dilute sulfuric acid must be added to the magnesium methanoate.

Explain why this is necessary and also whether the volume of sulfuric acid chosen will affect the result of the titration.

.....

.....

.....[2]

(v) The potassium manganate(VII) is added from a burette into the magnesium methanoate in a conical flask.

Describe what you would see when you had reached the end-point of the titration.

.....

.....[1]

(vi) 1 mol of acidified MnO_4^- ions reacts with 2.5 mol of HCOO⁻ ions.

25.0 cm³ of the diluted solution prepared in **(iii)** required 25.50 cm³ of 0.0200 mol dm⁻³ potassium manganate(VII) solution to reach the end-point.

Use this information to calculate the concentration, in moldm⁻³, of HCOO⁻ ions in the diluted solution.

..... mol dm⁻³ [1]

(vii) Use your answer to (vi) to calculate the concentration, in mol dm⁻³, of the saturated solution of magnesium methanoate, Mg(HCOO)₂. Give your answer to **three significant figures**.

..... mol dm⁻³ [1]

[Turn over

9701/51/M/J/15

© UCLES 2015

[1]

(b) The solubility of magnesium methanoate can be determined at higher temperatures using the same titration.

In an experiment to determine how the concentration of saturated magnesium methanoate varies with temperature, name the independent variable and the dependent variable.

independent variable

(c) The solubility of magnesium methanoate increases with temperature.

What does this tell you about ΔH for the process below?

$$Mg(HCOO)_2(s) \rightleftharpoons Mg^{2+}(aq) + 2HCOO^{-}(aq)$$

Explain your answer.

[2]

(d) A student used the same titration method, this time to measure the concentration of a saturated solution of *barium* methanoate.

Explain why the acidification of the solution with dilute sulfuric acid might make the titration difficult to do.

[1]

[Total: 15]

© UCLES 2015

5

QUESTION 2 STARTS ON THE NEXT PAGE.

© UCLES 2015

2 At high temperatures a mixture of iodine and hydrogen gases reacts to form an equilibrium with gaseous hydrogen iodide.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

(a) (i) Write an expression for the equilibrium constant, K_c , based on concentration, for this reaction.

[1]

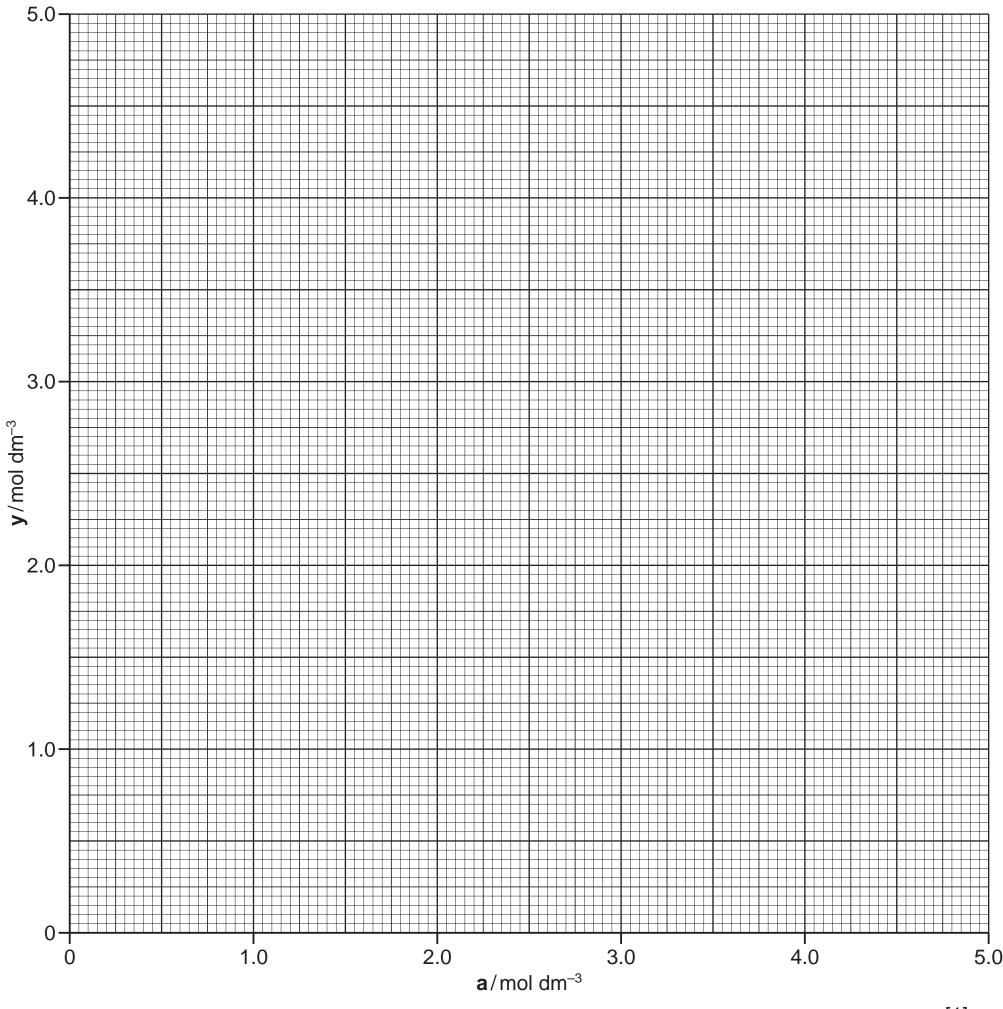
(ii) If the starting concentration of both iodine and hydrogen was $\mathbf{a} \mod \mathrm{dm}^{-3}$ and it was found that $2\mathbf{y} \mod \mathrm{dm}^{-3}$ of hydrogen iodide had formed once equilibrium had been established, write K_c in terms of \mathbf{a} and \mathbf{y} .

[1]

(b) The expression for the equilibrium constant from (a)(ii) can be re-written as shown below.

$$\mathbf{y} = \frac{\mathbf{a}\sqrt{K_{\rm c}}}{2+\sqrt{K_{\rm c}}}$$

In an experiment, air was removed from a 1 dm^3 flask and amounts of hydrogen and iodine gases were mixed together such that their initial concentrations were both $\mathbf{a} \mod \text{dm}^{-3}$. This mixture was allowed to come to equilibrium at 760 K in the flask. The equilibrium concentration of iodine, $(\mathbf{a} - \mathbf{y}) \mod \text{dm}^{-3}$, was then measured.


The experiment was repeated for various initial concentrations, **a** moldm⁻³, and the results were recorded in the table below.

(i) Complete the table to give the values of y moldm⁻³ to three decimal places.

a mol dm⁻³	(a – y) mol dm⁻³	y mol dm⁻³
0.200	0.022	0.178
0.500	0.050	
0.800	0.252	
1.000	0.200	
1.500	0.365	
2.100	0.570	
2.800	0.652	
3.400	0.700	
3.800	0.867	
4.200	0.868	
4.900	1.150	

© UCLES 2015

(ii) Plot a graph to show how y mol dm⁻³ varies with initial concentrations of hydrogen and iodine, \mathbf{a} mol dm⁻³.

[1]

(iii) Use your points to draw a line of best fit.

© UCLES 2015

(c) (i) Determine the slope of your graph. State the co-ordinates of both points you used for your calculation. Record the value of the slope to **three significant figures**.

co-ordinates of both points used	

slope =[2]

(ii) Use the value of your slope and the equation in (b) to calculate the value of K_c . Your working **must** be shown.

[2]

(d) Explain why, for safety reasons, it is necessary to remove air from the 1 dm³ flask.

[1]

(e) One of the experiments in (b) was repeated in a 500 cm³ flask instead of the 1 dm³ flask.

What effect, if any, would this have on the rate of reaction and the value of K_c measured?

C]	1
 [2	J.

© UCLES 2015

(f) The reaction of hydrogen and iodine to form hydrogen iodide is exothermic.

 $H_2(g) + I_2(g) \rightleftharpoons 2HI(g) \qquad \Delta H = -9.6 \text{ kJ mol}^{-1}$

- (i) On your graph, draw and label the line you would expect if the experiment was performed at 1000 K instead of 760 K. [1]
- (ii) What effect, if any, would the higher temperature have on the value of K_c ?

.....[1]

[Total: 15]

© UCLES 2015

BLANK PAGE

© UCLES 2015

BLANK PAGE

© UCLES 2015

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2015