CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the May/June 2015 series

9701 CHEMISTRY

9701/41

Paper 4 (Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9701	41

Question	Marking point	Marks
1 (a)	oxygen: ($1 \mathrm{~s}^{2}$) $2 \mathrm{~s}^{2} 2 \mathrm{p}^{4}$ fluorine: ($1 s^{2}$) $2 s^{2} 2 p^{5}$	1
(b) (i)	$\mathrm{F}_{2} \mathrm{O} / \mathrm{OF}_{2}$	1
(ii)		1
(iii)	bent or non-linear	1
(c) (i)	E^{\ominus} values: $\mathrm{F}_{2} / \mathrm{F}^{-}=2.87 \mathrm{~V}$ and $\mathrm{Cl}_{2} / \mathrm{Cl}^{-}=1.36 \mathrm{~V}$ fluorine (has the more positive E^{\ominus} so) is more oxidising	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(ii)	redox	1
(iii)	$\mathrm{ClF}+2 \mathrm{KBr} \longrightarrow \mathrm{KCl}+\mathrm{KF}+\mathrm{Br}_{2}$	1
[Total: 8]		
2 (a) (i)	hydrogen chloride or HCl	1
(ii)	either ($\mathrm{RCOC} l$) has two electron-withdrawing groups/atoms, making the more $\delta+$ /electron deficient or (RCOCl) has an oxygen, making the carbon more $\delta+/$ electron deficient or (RCOCl) has two electron-withdrawing groups, weakening the $\mathbf{C}-\mathbf{C l}$ bond	1
(b) (i)	 P Q	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(ii)	step 1: heat with $\mathrm{MnO}_{4}^{-} / \mathrm{KMnO}_{4}$ (+ acid or alkali) step 2: $\mathrm{PCl}_{3}+$ heat or SOCl_{2} or PCl_{5} step 4: LiAHH_{4} (in dry ether)	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$
[Total: 7]		

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9701	41

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9701	41

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9701	41

6 (a) (i)	$\mathrm{CH}_{3} \mathrm{COCl}$ or ethanoyl chloride	1
(ii)	electrophilic substitution	1
(iii)	conc HNO_{3} and conc $\mathrm{H}_{2} \mathrm{SO}_{4}$	1
(iv)	CHI_{3} or	1 1
(b) (i)		1
(ii)	polyamide or condensation	1
(iii)	$\mathrm{H}_{2} \mathrm{O} /$ water	1
(iv)	$\mathrm{Sn} / \mathrm{Fe}+\mathrm{HCl}+$ conc/aq/heat/warm	1
(v)	harder or more dense or stronger or higher m.pt or tougher or more rigid due to cross-linking or more H -bonding between the chains	1

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	$\mathbf{9 7 0 1}$	$\mathbf{4 1}$

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9701	41

(b) (i)	labelled diagrams in words - the enzyme has a specific shape or substrate shape is complementary to active site - the substrate bonds/binds/fits to the active site or other substrates do not fit into active site	1 1
(ii)	labelled diagrams or in words - inhibitor binds to enzyme away from the active site or inhibitor binds to allosteric site - this changes the shape (or structure) of the active site - substrate no longer fits the active site	1 1 1
[Total: 10]		
$9 \quad$ (a) (i)	use restriction enzymes or using an enzyme to break (the DNA) down into smaller fragments	1
(ii)	use the polymerase chain reaction or use DNA polymerase to replicate / copy (the sample of DNA)	1
(iii)	- amino acids have different charges due to their side-chain/R group/pH/ $\mathrm{CO}_{2}{ }^{-}$and $\mathrm{NH}_{3}{ }^{+}$groups - DNA fragments have negatively-charge phosphates(or PO_{4}) or DNA has $\mathrm{PO}_{4}{ }^{3-}$ groups	1 1

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9701	41

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9701	41

	produces the largest amount of SO_{2} or largest combined amount of SO_{2} and NO_{2}	
(iii)	they burn at higher temperatures or release more heat on burning	1
(iv)	CO - the gas is toxic/poisonous or references to Hb and ability to carry oxygen	
$\mathrm{CO}_{2}-$ the gas contributes to global warming		

